Insights on In-Season Corn Disease Management Decisions

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Corn is approaching the V6-V8 growth stages in regions of Wisconsin. With this, comes many questions about applying fungicide to control disease and preserve yield. What diseases are out there? What disease(s) should I focus on in-season? When should I spray? What should I spray? On top of these questions, we are also confronted with corn prices, which are less than ideal and create tight profit margins. So what should we consider for in-season disease management? Lets consider the diseases first, then the management decisions.

Figure 1. NCLB Lesions on a corn leaf

Northern Corn Leaf Blight (NCLB): The most diagnostic symptom of NCLB is the long, slender, cigar-shaped, gray-green to tan lesions that develop on leaves (Fig. 1).  Disease often begins on the lower leaves and works it way to the top leaves.  This disease is favored by cool, wet, rainy weather. Higher levels of disease might be expected in fields with a previous history of NCLB and/or fields that have been in continuous and no-till corn production. The pathogen over-winters in corn residue, therefore, the more residue on the soil surface the higher the risk for NCLB.  Management should focus on using resistant hybrids and residue management.  In-season management is available in the form of several fungicides that are labeled for NCLB. However, these fungicides should be applied at the early onset of the disease and only if the epidemic is expected to get worse.

While I hate talking about threshold levels for managing disease, it can be helpful in your decision making process to know what might be severe. While scouting look in the lower portion of the canopy. If some symptoms are present in the lower canopy, make a visual estimation of how frequent (percentage of plants with lesions) NCLB is in a particular area and how severe (how much leaf area is covered by NCLB lesions.  The lower leaves aren’t responsible for much yield accumulation in corn, but spores produced in NCLB lesions on these leaves can be splashed up to the ear leaves where disease can be very impactful. So by scouting the lower canopy and getting an idea of how much disease is present, you can “predict” what might happen later on the ear-leaves to make an informed spray decision.

Figure 2: A computer simulation of 5% NCLB severity on a corn leaf.

The other consideration you should make while scouting is the resistance rating that the hybrid has for NCLB. If it is rated as resistant, then NCLB severity might not be predicted to get very severe, while in  a susceptible hybrid, NCLB might be present on 50% or more of plants at high severity levels. Note however, that even if a hybrid is rated as resistant, it can still get some disease. Resistance isn’t immunity! If NCLB is present on on at least half the plants and severity is at least 5-10% and weather is forecast to be rainy and cool, a fungicide application will likely be needed to manage the disease. So what does 5% leaf severity look like? Figure 2 is a computer generated image that shows 5% of the corn leaf with NCLB lesions. You can use this image to train your brain to visually estimate how severe the disease might be on a particular leaf. As for fungicide choice and timing, I consider that further below.

Figure 3. Gray Leaf Spot lesions on a corn leaf.

Gray Leaf Spot (GLS): Gray leaf spot typically starts as small blocky or jagged, light tan spots. These can expand to become long, narrow, rectangular lesions (Fig. 3) that may have yellow or orange halos around them. Gray leaf spot is typically worse when temperatures are warm and humidity is frequently above 90%. Thus, in Wisconsin, this disease is generally more frequent in the southern and southeastern portion of the state. Conditions that favor GLS often do not favor NCLB. The GLS pathogen and NCLB pathogen have different temperature requirements. Yield loss from GLS will be the greatest if lesions develop on the ear-leaves right before and right after tasseling. Like NCLB, hybrids rated as susceptible will generally suffer greater yield reductions due to gray leaf spot. Management of GLS should focus on choosing hybrids with excellent resistance and managing corn residue. Corn residue allows the pathogen to overwinter.

Like NCLB, fungicides can also be used to manage gray leaf spot. However, these should be applied as preventative applications. Thus using the same rule of thumb to make a spray decision for GLS, as for NCLB, can help you make the decision to spray fungicide. As for fungicide choice and timing, I will also consider that further below.

Figure 4. Tar Spot Signs and Symptoms on Corn Leaves

Tar Spot: Tar spot is favored by cool conditions (60-70 F) and high relative humidity (averages above 75%). Over the last several seasons the tar spot pathogen, Phyllachora maydis, has been able to cause yield reductions in parts of the Midwest by itself. There seems to be no need for a second fungus, Monographella maydis to be present to cause “fisheye” symptoms along with severe necrosis and early dry down. In addition, work done in the Midwest shows that the tar spot fungus can overwinter on corn residue from the previous season. So like with NCLB and GLS fields with high levels of infested residue might be more prone to infection by the tar spot fungus.

Not a lot is known about hybrid resistance to tar spot. Losses as high as 50-60 bushels per acre have been recorded on some hybrids, while others in the same field were only marginally affect. Partial resistance might be present in Midwest on certain corn hybrids. However work is ongoing to understand which hybrids those might be. Fungicide applications have been shown to reduce tar spot levels. However, timing of application must coincide with disease onset and product choice is important. Mixed-mode-of action fungicides have been the most consistent in efficacy over the past several seasons (more on that below). More information on tar spot can be found by CLICKING HERE.

Figure 5. Eyespot symptoms on a corn leaf.

Eyespot: Eyespot typically first develops as very small pen-tipped sized lesions that appear water-soaked.  As the lesions mature they become larger (¼ inch in diameter) become tan in the center and have a yellow halo (Fig. 5).  Lesions can be numerous and spread from the lower leaves to upper leaves. In severe cases, lesions may grow together and can cause defoliation and/or yield reduction. Eyespot is also favored by cool, wet, and frequently rainy conditions.  No-till and continuous corn production systems can also increase the risk for eyespot, as the pathogen is borne on corn residue on the soil surface.  Management should focus on the use of resistant hybrids and residue management.  In-season management is available in the form of fungicides. Severity has to reach high levels (>50%) before this disease begins to impact yield. I often have eyespot present in my corn trials each year as we plant into continuous corn and use no-till. However, we typically do not see yield reductions from this disease even in non-sprayed plots. When scouting, note the disease and keep track of the severity. Again, fungicides should be applied early in the epidemic and may not be cost effective for this disease alone.

What Disease(s) Should I Focus on In-Season? Based on the information above, the greatest emphasis for Wisconsin should be placed on controlling NCLB, GLS, and tar spot. Most hybrids planted in Wisconsin will be resistant to eyespot.

What Should I Spray, and When Should I Spray for Corn Foliar Diseases In Wisconsin? Fungicide should be used to preserve yield and reduce disease level. There is no silver bullet fungicide out there for all corn diseases. However, there are many products which work well on a range of diseases. The Corn Fungicide Efficacy table lists products that have been rigorously evaluated in university research trials across the country. You can see there are several products listed that perform well on NCLB, GLS, and tar spot. So obviously, if a disease is present and you are trying to control the disease, you might expect more return on your investment, compared to simply spraying fungicide and hoping that there might be a yield increase.

Paul et al. (2011) conducted research to investigate the return on investment (ROI) of using fungicide at low and elevated levels of disease. Data from 14 states between 2002 and 2009 were used in the analysis. They looked at 4 formulations of fungicide products across all of these trials. I won’t go into detail about all products, but will focus on one here, pyraclostrobin. This is the active ingredient in Headline® Fungicide. In all, 172 trials were evaluated in the analysis and Paul et al. found that on average there was a 4.08 bu/acre increase in corn grain yield when pyraclostrobin was used. So there does appear to be some increase in yield with the use of fungicide over not treating across a range of environments. But in our current market, will this average gain cover the fungicide application? Today’s corn future price for September has a bushel of corn at $3.31.

Figure 6. Average yield preservation of QoI+DMI fungicide applications over not-treating across the U.S. corn belt at the V6, Vt, and V6+VT application timing.

Let’s Take a Closer Look at Corn Fungicide Return on Investment (ROI): While most of the early work on fungicide use in corn has focused on Headline® Fungicide, much of the industry has transitioned to using multi-mode-of-action products. These would be products mostly containing strobilurin (QoI), triazole (DMI), and/or succinate dehydrogenase inhibitor (SDHI) fungicides in the same jug. Details about fungicides and fungicide mode of action can be found on the Fungicides for Field Crops Information Page. Products such as Headline AMP® or Quilt Xcel® would fall into the QoI + DMI category. These combination products have also been fairly consistent in response in my fungicide trials. You can find summaries of these trial results here. If we consider using Quit Xcel® at 10.5 fl oz or Headline AMP® at 10.0 fl oz, the list pricing of the product alone ranges from $15/acre (Quit Xcel®) to $22/acre (Headline AMP®). If the fungicide will be flown on with an aircraft, that cost will likely add nearly $15/acre to the application. Thus, fungicide plus application would range from $30/acre to $37/acre. If we can sell corn at $3.31 per bushel then we would need to preserve 9 bu/acre to nearly 11 bu/a in yield over not treating to break even! In a recent analysis of corn yield data where DMI+QOI products were applied at the tasseling period (VT) across the entire corn belt, the average yield preservation over not treating was 7.20 bu/a (Fig. 6). This average projection is short of the 9 bu/a minimum we would need in the scenario above. However, the probability of preserving yield considering an average of 7.20 bu/a preserved yield over not treating and $3.31/bu corn price is around 30% (Fig. 7). This means that if we apply Quit Xcel® at 10.5 fl oz or Headline AMP® at 10.0 fl oz aerially, we will only break even 30% of the time with corn priced at $3.31 per bushel. If we can sell our corn for a better price or make the applications cheaper, then the odds will improve, but probably not climb above 70% even under the best case scenario. We do know that in Wisconsin, the odds of breaking even do improve if NCLB or GLS are active and increasing during the tasseling period. Get out there and scout!

Figure 7. Probability of Breaking Even Based on Data from Across the U.S. (VT Application Timing)

So What About Fungicide Application Timing? We can investigate this questionover the U.S. corn belt using the same dataset. Applications focused on an early (V6) timing, a VT-R2 timing, or a combination of V6 plus a VT-R2 application. Let’s again focus on the QoI+DMI products. Based on observations across the corn belt the V6 timing averaged almost 3 bu/a of preserved yield over not treating (Fig. 6). The VT application resulted in nearly 7.2 bu/a in preserved yield, while the two-pass program only offered a little over 8 bu/a. Clearly the higher average yield preservation occurs using a single application of fungicide at the VT-R2 timing. Wisconsin data has been consistent with this observation. Thus it is recommended that a single application of fungicide be used around the VT-R2 growth stages, when NCLB or GLS are active and increasing on or near the ear leaves.

What About Silage Corn and Ear Rot? When it comes to ear rot control and reducing the accumulation of mycotoxins in grain or silage corn, fungicide application should be made when white silks are out. Spores of fungicide that generally cause mycotoxin issues in the grain portion of corn will infect the plant through silks. Thus, apply fungicides during silking or with 5-10 days after silking starts, can be beneficial. Note though that if the goal is to target mycotoxin production and reduce deoxynivalenol (DON) accumulation in the grain portion of the plant, products containing a DMI component should be used. Results where QoI + DMI products were used on silage corn can be found in our 2019 Fungicide Test Summary.

Finally, be aware that in some cases, application of fungicide in combination with nonionic surfactant (NIS) at growth stages between V8 and VT in hybrid field corn can result in a phenomenon known as arrested ear development. The damage is thought to be caused by the combination of NIS and fungicide and not by the fungicide alone. To learn more about this issue, you can CLICK HERE and download a fact sheet from Purdue Extension that covers the topic nicely. Considering that the best response out of a fungicide application seems to be between VT-R2, and the issues with fungicide plus NIS application between V8 and VT, I would suggest holding off for any fungicide applications until at least VT. If you want to spray earlier than VT, keep the NIS out of the tank!

Summary

As we approach the critical time to make decisions about in-season disease management on corn, it is important to consider all factors at play while trying to determine if a fungicide is right for your corn operation in 2020. Here is what you should consider:

1) Corn hybrid disease resistance score for NCLB and GLS (and perhaps tar spot too, if known) – Resistant hybrids may not have high levels of disease which impact yield.

2) Get out of the truck and SCOUT, SCOUT, SCOUT – Consider how much disease and the level of severity of disease present in the lower canopy prior to tassel.

3) Consider weather conditions prior to, and during, the VT-R2 growth stages – if weather is conducive for NCLB, GLS, and or tar spot then disease may continue to increase in corn and a fungicide application might be necessary. If it turns out to be hot and dry, disease development will stop and a fungicide application would not be needed.

4) Consider your costs to apply a fungicide and the price you can sell your corn grain – Will you preserve enough yield out of the fungicide application to cover its cost?

5) Hold off with making your fungicide application in Wisconsin until corn has reached the VT-R2 growth stages – The best foliar disease control and highest likelihood of a positive ROI will occur when fungicide is applied during this timing when high levels of disease are likely.

6) Be aware that every time you use a fungicide you are likely selecting for corn pathogen populations that will become resistant to a future fungicide application – Make sure your fungicide application is worth this long-term risk. See fact sheet A3878 below for more information.

Other Resources

Video: Disease Management in Low-Margin Years (fast forward to 10:00 for corn information)

Fact Sheet: A4137 – Grain Management Considerations in Low-Margin Years

Fact Sheet: A3878 – Fungicide Resistance Management in Corn, Soybeans, and Wheat in Wisconsin

References

Groves, C.L., Kleczewski, N.M., Telenko, D.E.P., Chilvers, M.I., and Smith, D.L. 2020. Phyllachora maydisascospore release and germination from overwintered corn residue. Plant Health Progress. https://doi.org/10.1094/PHP-10-19-0077-RS.

Munkvold, G.P. and White, D.G., editors. 2016. Compendium of Corn Diseases, Fourth Edition. APS Press.

Paul, P. A., Madden, L. V., Bradley, C. A., Robertson, A. E., Munkvold, G. P., Shaner, G., Wise, K. A., Malvick, D. K., Allen, T. W., Grybauskas, A., Vincelli, P., and Esker, P. 2011. Meta-analysis of yield response of hybrid field corn to foliar fungicides in the U.S. Corn Belt. Phytopathology 101:1122-1132.

Wise, K., Mueller, D., Sisson, A., Smith, D., Bradley, and Robertson, A., editors. 2016. A Farmer’s Guide to Corn Diseases. APS Press.

Wise, K.A. and Smith, D.L., Freije, A., Mueller, D.S., Kandel, Y., Allen, T., Bradley, C.A., Byamukama, E., Chilvers, M., Faske, T., Friskop, A., Hollier, C., Jackson-Ziems, Kelly, H., Kemerait, B., Price, P., Robertson, A., and Tenuta, A. 2019. Meta-analysis of yield response of foliar fungicide-treated hybrid corn in the United States and Ontario, Canada. PLoS ONE 14(6): e0217510. https://doi.org/ 10.1371/journal.pone.0217510.

Corn Stalk Rots and Ear Rots: A Double Whammy for Wisconsin Corn Farmers Again this Year

Damon L. Smith, Associate Professor and Extension Field Crops Pathology Specialist, University of Wisconsin-Madison

John Goeser, Adjunct Assistant Professor, Department of Dairy Science, University of Wisconsin-Madison and Animal Nutrition Director, Rock River Laboratory, Inc

Figure 1. Anthracnose stalk rot of corn.

The 2019 growing season is the third year in a row where we are going to end with many challenges for Wisconsin farmers. The excessively wet weather is challenging the last of corn silage harvest, and grain harvest has barely started in much of the state. Couple this with wet weather, delayed planting, and plant stress most of the season and there is a double whammy of stalk rot and ear rot issues to contend with this fall.

What is the Primary Stalk Rot Issue in Wisconsin?

Anthracnose stalk rot (Fig. 1) has been readily apparent for Wisconsin corn growers this season. Anthracnose stalk rot is typically worse in fields in a corn-on-corn rotation, and/or no-tilled, and planted to a susceptible hybrid. Reports and observations of lodging are starting to come in. In addition, to anthracnose stalk rot, we are also seeing Gibberella stalk rot picking up . This stalk rot seems to be showing up in late-planted corn-situations and especially wet fields. This isn’t surprising given the weather conditions and level of plant stresses from compaction, slow accumulation of growing degree day units, and foliar pathogens. Impending frost in much of the state this weekend will also end the growing season, meaning that plants already damaged by stalk rot will shut down. The clock starts ticking on what can be done and lodging becomes a considerable concern.

Frosted corn for silage will begin drying at a faster and constant rate, regardless of kernel or plant maturity. The primary aim for frosted corn meant for the silo becomes achieving an ideal moisture content for ensiling. With whole-plant corn silage, the ideal moisture range is 63 to 68% however with frost damaged or killed corn, achieving this dry matter for the entire crop may prove impossible.  Actively monitor moisture during harvest and segregate the crop if moisture dips below 55%, to avoid silage storage and stability issues later on. 

What should I do if I have a field with stalk rot?

In fields where stalk rot is an issue, HARVEST AS EARLY AS POSSIBLE to avoid yield losses from lodging. Silage corn fields should also be chopped as soon as possible, monitoring moisture and being sure to take extra care in packing the bunker. Delaying harvest for grain corn will increase the likelihood of lodging which will increase harvesting issues. Once conditions dry enough to allow combines to run, fields with higher levels of stalk rot and/or lodging should be prioritized for harvest.

What should I do about stalk rot for next season?

Management of of any of the stalk rots is multi-faceted. First, choose hybrids with the best resistance available. Hybrids that also have good resistance to foliar diseases will also offer an advantage when managing stalk rot, as foliar disease can stress corn plants and lead to increased risk of stalk rots like anthracnose stalk rot. Cultural practices such as crop rotation and tillage to manage surface residue can also help. Other practices that reduce plant stress such as balanced fertilization, proper planting population, providing suitable drainage, and using well adapted hybrids for your location will reduce the risk of anthracnose stalk rot.

Fungicides are not recommended for managing stalk rots, directly. However, we have observed better standability of corn in years with heavy foliar disease pressure, where fungicides have been applied.  This makes sense, because controlling heavy foliar disease allows the plant to continue to produce carbohydrates through photosynthesis. When heavy foliar disease pressure is left unchecked, corn plants can scavenge the stalks for resources predisposing corn plants to stalk rot diseases and a loss in stalk integrity.  

What corn ear rots and mycotoxins should I watch out for?

Figure 2. Diplodia ear rot (2 ears on the left) and Gibberella ear rot (2 ears on the right) of corn. Photo Credit: Craig Grau.

With all the wet weather, several ear rots have appeared in corn around much of the state. Ear rots caused by fungi in the groups Diplodia (Fig 2.), Fusarium, and Gibberella (Fig. 2) will be the most likely candidates to watch for as you begin harvest.  Fusarium and Giberrella are typically the most common fungi on corn ears in Wisconsin.  This group of fungi not only damage kernels on ears, but can also produce toxins called mycotoxins.  These toxins (fumonisins and vomitoxin) can threaten livestock that are fed contaminated grain. Thus grain buyers actively test for mycotoxins in corn grain to monitor mycotoxin levels to be sure they are not above certain action levels established by the U.S. Food and Drug Administration (FDA).

The FDA has established maximum allowable levels of fumonisins in corn and corn products for human consumption ranging from 2-4 parts per million (ppm).  For animal feed, maximum allowable fumonisin levels range from 5 ppm for horses to 100 ppm for poultry. Vomitoxin limits are 5 ppm for cattle and chickens and 1 ppm for human consumption.

Diplodia ear rot is not as common in Wisconsin. This disease is often more severe in years where dry weather precedes silking, followed by wet weather immediately after silking. Diplodia ear rot does not produce mycotoxins. While this disease does not result in mycotoxin accumulation, it can cause grain yield loss and quality issues.

For more information about ear rots and to download a helpful fact sheet produced by a consortium of U.S. corn pathologists, CLICK HERE.

 

How do I reduce mycotoxin risks at harvest?

Before harvest, farmers should check their fields to see if moldy corn is present. Sample at least 10-20 ears in five locations of your field. Pull the husks back on those ears and observe how much visible mold is present. If 30% or more of the ears show signs of Gibberella or Fusarium ear rot then testing of harvested grain is definitely advised. If several ears show 50-100% coverage of mold testing should also be done. Observe grain during harvest and occasionally inspect ears as you go. This will also help you determine if mycotoxin testing is needed.

If substantial portions of fields appear to be contaminated with mold, it does not mean that mycotoxins are present and vice versa. Remember, Diplodia ear rot does not produce mycotoxins. However, if you are unsure, then appropriate grain samples should be collected and tested by a reputable lab.  Work with your corn agronomist or local UW Extension agent to ensure proper samples are collected and to identify a reputable lab. If tests show high levels of mycotoxins in grain, that grain SHOULD NOT BE BLENDED with non-contaminated corn.

For more information on mycotoxins and to download a fact sheet, CLICK HERE.

Helpful information on grain sampling and testing for mycotoxins can be found by CLICKING HERE.

For a list of laboratories that can test corn grain for mycotoxins, consult Table 2-16 in UW Extension publication A3646 – Pest Management in Wisconsin Field Crops.

 

How should I store corn from fields with ear rots and mold?

If you observe mold in certain areas of the field during harvest, consider harvesting and storing that corn separately, as it can contaminate loads; the fungi causing the moldy appearance can grow on good corn during storage.  Harvest corn in a timely manner, as letting corn stand late into fall promotes Fusarium and Gibberella ear rots.  Avoid kernel damage during harvest, as cracks in kernels can promote fungal growth.  Also, dry corn properly as grain moisture plays a large role in whether corn ear rot fungi continue to grow and produce mycotoxins.  For short term storage over the winter, drying grain to 15% moisture and keeping grain cool (less than 55F) will slow fungal growth. For longer term storage and storage in warmer months, grain should be dried to 13% moisture or less. Fast, high-heat drying is preferred over low-heat drying. Some fungi can continue to grow during slow, low-heat drying. Also, keep storage facilities clean.  Finally, mycotoxins are extremely stable compounds: freezing, drying, heating, etc. do not degrade mycotoxins that have already accumulated in grain. While drying helps to stop fungal growth, any mycotoxins that have already accumulated prior to drying will remain in that grain. The addition of acids and reducing pH can reduce fungal growth but will not affect mycotoxins that have already accumulated in harvested grain.

For wet corn, earlage, snaplage or corn silage, promote optimal fermentation to preserve and stabilize the feed for dairy or beef cattle. As mentioned above, mycotoxin presence will not be alleviated, however stabilizing the crop can ensure the issue won’t worsen. Seal the crop as quickly as possible after harvest and use a research proven bacterial inoculant, acid or chemical preservative to stabilize the crop quickly after sealing. Monitor bag, bunker, and pile silo plastic for holes throughout the year and seal those you find quickly. Seal the ends and/or edges with added weight to minimize air infiltration into the silage or grain.

For more information on properly storing grain and to download a fact sheet on the subject, CLICK HERE.

 

What impact will ear and stalk rot have on my cows? 

Ear and stalk rots do not equate to animal health issues, however mycotoxins or wild yeast contamination which may be produced by or accompany ear and stalk rots can affect rumen health and digestion. As described above, manage the crop to the best of your ability from harvest through storage. Upon feed out, introduce heavily ear and stalk rot-laden feeds slowly into the ration. Test the suspicious crop for mold, yeast and vomitoxin content as you begin feeding it and closely monitor dry matter intakes and animal health. 

If animal health issues or contaminant levels for yeast and mycotoxin are recognized, consult with your nutrition and veterinary advisor as to the best plan of attack. Dilute the suspicious feed to a lesser amount if possible or consider research backed nutritional additives which can lessen yeast or mycotoxin impact on health. 

 

References

This article is an adaptation of the following resource:

Smith, D.L. 2016. Corn Stalk Rots and Ear Rots: A Double Whammy for Wisconsin Corn Farmers. 

 

 

Corn Disease and Nutritive Value Considerations for the 2019 Silage Harvest

Damon L. Smith, Associate Professor and Extension Field Crops Pathology Specialist, University of Wisconsin-Madison

John Goeser, Adjunct Assistant Professor, Department of Dairy Science, University of Wisconsin-Madison and Animal Nutrition Director, Rock River Laboratory, Inc

The 2019 silage corn harvest is finally starting to ramp up in Wisconsin. With the excitement of finally getting into the field comes the need to be aware of the corn disease situation this season. As most of you will remember, the 2018 field season was an extreme challenge when it came to making quality corn silage in Wisconsin. Foliar diseases of corn, forced the plants to lose photosynthetic capability pre-maturely, resulting in cannibalization of stalks for carbohydrates to fill ears. Loss in stalk integrity meant extreme lodging, not to mention that is was a struggle to find optimum moisture in any field. Throw in frequent rains, and trying to chop on time to achieve quality fermentation was nearly impossible in 2018. The consequences of the challenging season are still being felt with poor quality, wild yeast issues, and higher than typical mycotoxin loads. So what does 2019 look like?

Foliar Disease of Silage Corn in 2019 

Compared to 2018, the foliar disease situation has been less significant in 2019. However, there are still some important diseases to consider as you prepare for harvest. Statewide, gray leaf spot did appear early again this season. However, unseasonably cool weather kept this disease relegated to the lower canopy. For most fields we have visited, gray leaf spot will likely be of little impact on yield and feed quality this year. 

Figure 1. Tar spot on a leaf of corn located in Arlington, WI on August 7, 2019. Photo Credit: Hannah Reed, University of Wisconsin-Madison.

The flipside of the cooler weather meant that tar spot (Fig. 1) has become an issue again this year. Tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period. Periods of extended leaf wetness further facilitate increase and spread. We have been right in the ideal growth zone for the pathogen that causes tar spot since the first part of August. Over the last month, tar spot has been found in many areas of the state (CLICK HERE to view the latest national map for tar spot confirmations), leading to the 4th straight field season where this disease has impacted silage corn. While the disease has moved in later this season, compared to 2018, it is moving quickly. Tar spot can kill leaves prematurely, or reduce photosynthetic capacity. 

 

Figure 2. Northern corn leaf blight on corn.

Northern corn leaf blight (NCLB; Fig. 2) can also be readily found in the upper canopy in some fields in 2019. This disease has historically been a more significant problem on silage hybrids, increasing when the weather is cool and the humidity high. Depending on the severity and interaction of both NCLB and tar spot, these diseases can influence whole plant moisture levels and also cause stalk-cannibalization, leading to increased risk for lodging. As you prepare to chop silage, scout fields to understand the severity of foliar disease levels along with whole plant moisture and kernel maturity. Fields with the highest levels of foliar disease should be closely monitored for whole plant moisture and prioritized for harvest first. Then work your way to those fields with less visible disease.       

Ear rots and mycotoxins of silage corn in 2019 

Figure 3. Gibberella ear rot on corn.

In 2018, corn production in Wisconsin was also plagued by high levels of Gibberella ear rot (Fig. 3) and high levels of deoxynivalenol (DON or vomitoxin) in finished grain and silage. Remember that vomitoxin is a secondary metabolite produced by the fungus that causes Gibberella ear rot. We believe that 2019 will be another year with high levels of Gibberella ear rot and vomitoxin levels. Weather has been wet, especially during silking on late-planted fields in 2019. This increases the risk of Gibberella ear rot. Furthermore, the fungus that causes Gibberella ear rot can cause Fusarium head blight (FHB or scab) in wheat. Vomitoxin can also accumulate in wheat grain resulting in unusable grain, or grain subjected to dockage at the elevator. The 2019 wheat season saw high levels of FHB in winter wheat, with subsequent reports of high levels of vomitoxin. Anecdotal reports of very high DON levels have been reported in wheat straw harvested in 2019. This situation further substantiates the possibility that corn might also be hit hard with Gibberella this year. When scouting fields, pull back some husks to see if there is visible ear rot. Note these fields where high levels of severity exist. Also, check fields for lodging and assess stalk integrity. The fungus that causes Gibberella ear rot can also cause Gibberella stalk rot. We also know that from some preliminary research, vomitoxin can accumulate in the stalk portions of the plant in addition to the ears. Fields with high levels of ear rot and/or stalk rot should be prioritized for harvest first. You might also consider keeping silage from these higher-severity fields separate from other fields you harvest. Also consider testing for nutritive quality and mycotoxin load as you chop silage, so you know how much vomitoxin is present and potentially from which fields. Information on testing grain and silage can be found by clicking here. An additional list of testing labs can be found in A3646-Pest Management in Wisconsin Field Crops in table 2-16. Remember that mycotoxins like vomitoxin are very stable. They cannot be removed by heating or freezing. When storing corn grain for long periods of time, we recommend drying grain down to 13%. This will help stop the continued growth of the fungus that can cause vomitoxin and reduce any subsequent accumulation of the mycotoxin. In silage corn production, harvesting at optimum moisture and packing the bunker and inducing fermentation and anaerobic conditions as quickly as possible will limit any further growth of the fungus and any additional accumulation of vomitoxin.

If you sprayed silage corn with fungicide in 2019, this might help reduce the levels of foliar disease, ear rot, and vomitoxin levels. However, it will not “cure” the situation nor is it anywhere near perfect. Research in 2018 demonstrated that fungicides could reduce disease levels, but in a year when weather conditions were conducive for ear rot and vomitoxin accumulation expectations needed to be lowered. In 2018 certain fungicide programs had the capability of reducing vomitoxin levels by 50% or more, but that still meant that a lot of the silage made was still considered unacceptable for feeding due to high vomitoxin levels. Remember that hybrid choice, in addition to treating with fungicide, can play an important role in how much vomitoxin is present and the nutritive value of the finished feed.

What are the impacts of poor silage quality and mycotoxin accumulation? 

Animal nutritionists have observed many impacts of mycotoxin and microbial growth challenges in animals, including dairy cattle. Performance and health issues can range from milk fat or milk protein percentage decreases, to decreased milk production and all the way on up to feed refusal, intestinal or gut hemorrhaging, and death. For this reason, nutritionists have devised guidelines for dietary limits of some mycotoxins to reduce harm to the animal. Dr. John Goeser has assembled the “Mycotoxin Guidelines and Dietary Limits” fact sheet to help producers better understand the potentially harmful toxin levels in the total diet (DM). You will see in that chart that for vomitoxin (DON), the suggested total mixed ration (TMR) concern limit is just 0.5 to 1.0 ppm for dairy cattle. The fact sheet also provides a helpful formula to understand the contribution of toxin in a particular component of feed, relative to the total diet.

Also recognize microbial growth (mold, yeast and negative bacteria) challenges will increase with wetter conditions. Both mycotoxin load and microbial contamination need to be checked if performance or health appear challenged for your herd. Start by checking the TMR and then work backward from there with your advisory team.

We are expecting a prolonged harvest this year due to unprecedented planting growing conditions earlier this season. As discussed previously, step up your crop scouting efforts to optimize harvest this year. Consider using the approach discussed in this recent Hoard’s Dairyman HD Intel newsletter to be proactive and stay in control this harvest.

The Take-Home

  1. Spend some time scouting fields for foliar, ear, and stalk disease. Prioritize harvest for fields with high disease severity.
  2. Be proactive. Consider testing corn silage for mycotoxins, specifically vomitoxin, a couple times as your farm begins harvest. If results come back greater than expected, consider increasing frequency so you know what you are dealing with before silage is ensiled.
  3. Consider keeping fields with high disease levels and/or high vomitoxin levels segregated from better feed. 
  4. Take time to target optimum harvest moisture and packing conditions to shorten time to anaerobic conditions and fermentation.
  5. Keep oxygen out of the silo. After the silo, bunker, pile, or bag have been sealed, continue watching for holes or leaks on a regular basis and repair damaged plastic or seams. 

Tar Spot Now Confirmed in Wisconsin in 2019

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Hannah Reed, Graduate Research Assistant, Department of Plant Pathology, University of Wisconsin-Madison 

Brian Mueller, Assistant Researcher, Department of Plant Pathology, University of Wisconsin-Madison 

Figure 1. Corn IPM PIPE tar spot occurrence map as of August 7, 2019.

Tar spot has been found on corn in plots established to monitor for the disease in Arlington (Columbia Co.) and Lancaster (Grant Co.) WI (Fig. 1). In both cases the disease was present on hybrids known to be susceptible. At the Arlington location disease was found in just one small area of the field. Tar spot coverage was low to moderate on a few leaves (Fig. 2). Microscopy was used to observe ascospores from stromata, thus confirming the tar spot fungus (Fig. 3).

Figure 2. Tar spot on a leaf of corn located in Arlington, WI on August 7, 2019.

Tar spot was very hard to find in the Lancaster location. However, it was observed on several plants in one monitoring plot. In each case only 1-2 spots were observed.

What does this mean for you?

Figure 3. Asci and Ascospores of the tar spot fungus.

This means it is time to get back out and scout corn fields for tar spot. If you have had a history of tar spot and you know that you have a hybrid that is more susceptible and there is a large amount of infested residue, then you should monitor this situation closely. If tar spot is observed and you are irrigating or have had frequent rain, monitor this situation very closely. Tar spot seems to progress quickly in irrigated environments. Remember, that the window of opportunity to treat with a fungicide can pass rapidly as this disease can move quickly. Protecting this ear leaves before R3 can be important for preserving yield. There are many products that have demonstrated decent efficacy toward tar spot. You can find our 2018 fungicide test summaries by CLICKING HERE and scrolling down to pages 2-7. Work with your local extension personnel if you need help diagnosing the disease or need advice on spraying fungicides.

Wisconsin Mid-Season Corn Disease Update – August 2, 2019

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

The Tar Spot Situation

Figure 1. Tarspotter risk predictions for the state of Wisconsin on August 2, 2019.

Figure 1 shows the calculated risk from Tarspotter for August 2, 2019, for various locations in Wisconsin. As you can see, the present risk remains very low for most of the state. Continued warm and dry conditions have kept the risk low in Wisconsin. Tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period. We continue to scout fields in southern and southwestern WI and continue to find no tar spot in our travels. Tar spot has been observed now in multiple counties in Illinois, Indiana, and Michigan, along with one county in Iowa (Fig. 2). Continued dry weather is expected to keep this disease at non-existent or low levels in Wisconsin for the next couple of weeks.

Other Corn Diseases To Watch in Wisconsin

Figure 2. Corn IPM PIPE tar spot occurrence map as of August 2, 2019.

We continue to frequently find gray leaf spot (GLS) on corn. This disease is going to be problematic on some hybrids and in certain environments in Wisconsin. We are seeing GLS on ear leaves and severity is increasing. Remember, if you are going to spray fungicide, the idea is to spray preventatively before the disease reaches the ear leaves. Continue to scout fields and look in the lower canopy and watch movement of the pathogen and disease symptoms up the canopy. Optimal fungicide application timing if disease is progressing will be between VT and R3. See my previous article about making the fungicide spray decision.

Figure 3. Common rust on Corn. Photo Credit: Daren Mueller, Iowa State University, Bugwood.org

Southern rust has also been on our minds recently in Wisconsin. The disease is is caused by the fungus Puccinia polysora. Symptoms of southern rust are different from common rust (Fig. 3) in that they are typically smaller in size and are often a brighter orange color (Fig. 4). Pustules of southern rust also typically only develop on the upper surface and will be be more densely clustered. Favorable conditions for southern rust development are similar to those for common rust. high humidity and temperatures around 80F encourage disease development. However, very little free moisture is needed for infection to occur. Southern rust is typically a late-arriver in Wisconsin. When it does move in, it is usually in the southern and south-western portions of the state. Spores of this fungus have to be blown up from tropical regions or from symptomatic fields in the southern U.S. The fungus can not overwinter in Wisconsin. While southern rust epidemics can be rare events in Wisconsin, the disease can be serious when it occurs. In addition, when it occurs close to sinking, yield loss from the disease can be high. Thus, close monitoring of forecasts and scouting are needed to make timely in-seaosn management decision.

Figure 4. Southern rust on corn. Photo Credit: Emmanuel Byamukama, South Dakota State University, Bugwood.org

Currently the Corn Southern Rust iPIPE map is showing numerous confirmed cases of southern rust to our south, including an observations in a far northern Illinois county (Fig. 5). No confirmed cases have been identified in Wisconsin. However, close attention should be paid to this disease in 2019 as the confirmed cases this year have been earlier than in the past. This could mean that conditions are ripe for movement of southern rust inoculum into Wisconsin.

Management of Southern Rust

Figure 4. Corn IPM PIPE southern rust occurrence map for August 2, 2019.

Traditionally resistance was used to manage southern rust. However, in 2008 a resistance-breaking race of the southern rust fungus was confirmed in Georgia. Thus, most modern hybrids are considered susceptible to southern rust. Rotation and residue management have no effect on the occurrence of southern rust. The southern rust fungus has to have living corn tissue in order to survive and can not overwinter in Wisconsin. Fungicides are typically used to control southern rust in parts of the U.S. where this is a consistent problem. Efficacy ratings are also available for fungicides against southern rust on the Corn Fungicide Efficacy Table. Should southern rust make its way to Wisconsin prior to the “milk” (R3) growth stage in corn, it could cause yield reductions. Growers and consultants should scout carefully through the R3 growth stage and be sure to properly identify the type of rust observed. If you need assistance in identifying rust on corn, leaf samples of corn plants can be sent in a sealed plastic bag with NO added moisture to the University of Wisconsin Plant Disease Diagnostic Clinic (PDDC). Information about the clinic and how to send samples can be found by CLICKING HERE.

Other Useful Resources about Rusts on Corn

Purdue Extension Fact Sheet – Common and Southern Rusts of Corn

Video by Dr. Tamra Jackson-Ziems of the University of Nebraska – Identifying Rust Diseases of Corn

Wisconsin Corn Tar Spot and General Disease Update – July 18, 2019

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Figure 1. Tarspotter risk predictions for the state of Wisconsin on July 19, 2019.

Figure 1 shows the calculated risk from Tarspotter for July 19, 2019, for various locations in Wisconsin. As you can see, the present risk has dropped substantially over the past week, leaving much of the state at low risk. The drop is due to the high temperatures and drier conditions. Tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period. We have also scouted fields in southern and southwestern WI and have not found tar spot in our travels.

Gray Leaf Spot, Common Rust, and Northern Corn Leaf Blight, Oh My!

Figure 2. Gray leaf spot on a corn leaf.

While scouting we have observed other foliar diseases of corn, including gray leaf spot (GLS: Fig. 2), common rust (Fig. 3), and northern corn leaf blight (NCLB; Fig. 4). Out fo these three, GLS has been the most consistent to find in fields we have visited. In Grant Co., GLS has made its way to the mid-canopy of some corn planted no-till in a field that had corn last season. It will be important to keep an eye on GLS and NCLB over the next couple of weeks. These two disease can become yield limiting if they reach the ear leaf of corn at high severity levels before the R3 corn growth stage. Scouting to determine the number of plants showing symptoms and the severity will be important in determining if a fungicide application at the tasseling growth stage is needed. Right now I’m most concerned about GLS and NCLB in field corn in Wisconsin, while keeping an eye out for tar spot.

What Should I Spray, and When Should I Spray for Corn Foliar Diseases In Wisconsin? Fungicide should be used to preserve yield and reduce disease level. There is no silver bullet fungicide out there for all corn diseases. However, there are many products which work well on a range of diseases. The 2019 Corn Fungicide Efficacy table lists products that have been rigorously evaluated in university research trials across the country. You can see there are several products listed that perform well on both NCLB and GLS along with efficacy against tar spot. So obviously, if a disease is present and you are trying to control the disease, you might expect more return on your investment, compared to simply spraying fungicide and hoping that there might be a yield increase.

Figure 3. Common rust on a corn leaf.

Paul et al. (2011) conducted research to investigate the return on investment (ROI) of using fungicide at low and elevated levels of disease. Data from 14 states between 2002 and 2009 were used in the analysis. They looked at 4 formulations of fungicide products across all of these trials. I won’t go into detail about all products, but will focus on one here, pyraclostrobin. This is the active ingredient in Headline® Fungicide. In all, 172 trials were evaluated in the analysis and Paul et al. found that on average there was a 4.08 bu/acre increase in corn grain yield when pyraclostrobin was used. So there does appear to be some increase in yield with the use of fungicide over not treating across a range of environments. But in our current market, will this average gain cover the fungicide application? Today’s corn future price for September has a bushel of corn at $3.76.

Let’s Take a Closer Look at Corn Fungicide Return on Investment (ROI): While most of the early work on fungicide use in corn has focused on Headline® Fungicide, much of the industry has transitioned to using multi-mode-of-action products. These would be products mostly containing strobilurin (QoI) and triazole (DMI) fungicides in the same jug. Products such as Headline AMP® or Quilt Xcel® would fall into this category. These combination products have also been fairly consistent in response in my fungicide trials. You can find summaries of these trial results here. If we consider using Quit Xcel® at 10.5 fl oz or Headline AMP® at 10.0 fl oz, the list pricing of the product alone ranges from $15/acre (Quit Xcel®) to $22/acre (Headline AMP®). If the fungicide will be flown on with an aircraft, that cost will likely add nearly $15/acre to the application. Thus, fungicide plus application would range from $30/acre to $37/acre. If we can sell corn at $3.76 per bushel then we would need to preserve 8 bu/acre to nearly 10 bu/a in yield over not treating to break even! In a recent analysis of corn yield data where DMI+QOI products were applied at the tasseling period across the entire corn belt, the average yield preservation over not treating was 7.20 bu/a. This average projection is short of the 8 bu/a minimum we would need in the scenario above. However, the probability of preserving yield in the 8-10 bu/a range in this range is estimated to be 25% – 50%. This means that if we apply Quit Xcel® at 10.5 fl oz or Headline AMP® at 10.0 fl oz aerially, we will only break even 25% – 50% of the time with corn priced at $3.76 per bushel. If we can sell our corn for a better price or make the applications cheaper, then the odds will improve, but probably not climb above 70% even under the best case scenario. We do know that in Wisconsin, the odds of breaking even do improve if NCLB or GLS are active and increasing during the tasseling period. Get out there and scout!

Figure 4. Northern corn leaf blight on a corn leaf.

So What About Fungicide Application Timing? We can investigate this question over the U.S. corn belt using the same dataset. Applications focused on an early (V6) timing, a VT-R2 timing, or a combination of V6 plus a VT-R2 application. Let’s again focus on the QoI+DMI products. Based on observations across the corn belt the V6 timing averaged almost 3 bu/a of preserved yield over not treating. The VT application resulted in nearly 8 bu/a in preserved yield, while the two-pass program only offered a little over 8 bu/a. Clearly the higher average yield preservation occurs using a single application of fungicide at the VT-R2 timing. Wisconsin data has been consistent with this observation. Thus it is recommended that a single application of fungicide be used around the VT-R2 growth stages, when NCLB or GLS are active and increasing on or near the ear leaves.

What About Silage Corn and Ear Rot? When it comes to ear rot control and reducing the accumulation of mycotoxins in grain or silage corn, fungicide application should be made when white silks are out. Spores of fungicide that generally cause mycotoxin issues in the grain portion of corn will infect the plant through silks. Thus, apply fungicides during silking or with 5 days after silking starts, can be beneficial. Note though that if the goal is to target mycotoxin production and reduce deoxynivalenol (DON) accumulation in the grain portion of the plant, Products containing a DMI should be used. Like winter wheat, the application of some QoI-containing fungicides can increase DON accumulation in the grain portion of corn plants. Some work has been done using Proline® to control Fusarium ear rot. This DMI only product has shown promise in reducing ear rot and DON accumulation in the grain portion of the corn plant and has a label for suppressing Fusarium ear rot in Wisconsin. Performance of some additional products in Wisconsin in a 2018 silage corn trial can be viewed by CLICKING HERE and scrolling down to pages 4 and 5.

Finally, be aware that in some cases, application of fungicide in combination with nonionic surfactant (NIS) at growth stages between V8 and VT in hybrid field corn can result in a phenomenon known as arrested ear development. The damage is thought to be caused by the combination of NIS and fungicide and not by the fungicide alone. To learn more about this issue, you can CLICK HERE and download a fact sheet from Purdue Extension that covers the topic nicely. Considering that the best response out of a fungicide application seems to be between VT-R2, and the issues with fungicide plus NIS application between V8 and VT, I would suggest holding off for any fungicide applications until at least VT.

Summary

As we approach the critical time to make decisions about in-season disease management on corn, it is important to consider all factors at play while trying to determine if a fungicide is right for your corn operation in 2019. Here is what you should consider:

1) Corn hybrid disease resistance score for NCLB and GLS – Resistant hybrids may not have high levels of disease which impact yield.

2) Get out of the truck and SCOUT, SCOUT, SCOUT – Consider how much disease and the level of severity of disease present in the lower canopy prior to tassel.

3) Consider weather conditions prior to, and during, the VT-R2 growth stages – if weather is conducive for NCLB or GLS, disease may continue to increase in corn and a fungicide application might be necessary. If it turns out to be hot and dry, disease development will stop and a fungicide application would not be needed.

4) Consider your costs to apply a fungicide and the price you can sell your corn grain – Will you preserve enough yield out of the fungicide application to cover its cost?

5) Hold off with making your fungicide application in Wisconsin until corn has reached the VT-R2 growth stages – The best foliar disease control and highest likelihood of a positive ROI will occur when fungicide is applied during this timing when high levels of disease are likely.

6) Be aware that every time you use a fungicide you are likely selecting for corn pathogen populations that will become resistant to a future fungicide application – Make sure your fungicide application is worth this long-term risk. See fact sheet A3878 below for more information.

Other Resources

Video: Disease Management in Low-Margin Years (fast forward to 10:00 for corn information)

Fact Sheet: A4137 – Grain Management Considerations in Low-Margin Years

Fact Sheet: A3878 – Fungicide Resistance Management in Corn, Soybeans, and Wheat in Wisconsin

References

Munkvold, G.P. and White, D.G., editors. 2016. Compendium of Corn Diseases, Fourth Edition. APS Press.

Paul, P. A., Madden, L. V., Bradley, C. A., Robertson, A. E., Munkvold, G. P., Shaner, G., Wise, K. A., Malvick, D. K., Allen, T. W., Grybauskas, A., Vincelli, P., and Esker, P. 2011. Meta-analysis of yield response of hybrid field corn to foliar fungicides in the U.S. Corn Belt. Phytopathology 101:1122-1132.

Wise, K., Mueller, D., Sisson, A., Smith, D., Bradley, and Robertson, A., editors. 2016. A Farmer’s Guide to Corn Diseases. APS Press.

Wisconsin Corn Tar Spot Update for July 11, 2019 – Frass Happens!

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Figure 1. Tarspotter risk predictions for the state of Wisconsin on July 11, 2019.

Figure 1 shows the calculated risk from Tarspotter for July 11, 2019, for various locations in Wisconsin. Figure 2 shows the risk for locations in southern and south-central Wisconsin. As you can see, the present risk remains generally high for tar spot development in all locations examined. However, risk percentages have dropped over the last week, for the most part. The continued elevated risk is due to the fact that the humidity was high over the last weekend, despite warmer temperatures. As temperatures climb and conditions remain dry, expect risk to decline. Tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period.

Frass Happens!

Figure 2. Tarspotter risk predictions for southern Wisconsin on July 11, 2019.

That’s right folks, frass or bug poop is a common reality in corn fields. With all of the hype concerning tar spot, it has gotten folks out scouting corn. This is a good thing. However, we have received many samples in our diagnostic clinic that were submitted for tar spot confirmation. So far, these have all been confirmed to be insect frass or bug poop (Fig. 3). We have also scouted fields in Dane co., Walworth Co., Grant Co., and Lafayette Co. and have not observed tar spot in any fields visited. We have seen lots of insect frass though.

How can you tell if it is bug poop and not tar spot? Use a little spit or some water from a water bottle. Wet the leaf and lightly rub.  Bug poop will come off, tar spot will not. In addition, tar spot spots will be raised and can be felt when you rub your finger across the black spot. Frass generally won’t feel like it is raised. Continue to scout and send samples. It is always better to get a confirmation, before you spray. If it is nothing to worry about, you can save the trip and the money!

The Current Recommendation

Figure 3. Insect frass (a.k.a bug poop) on the surface of a corn leaf. Photo Credit: Roger Schmidt.

While weather continues to be mostly conducive for tar spot, evaluate the likelihood that tar spot might develop in your field. Remember, if you have no history of the disease, then the likelihood of local inoculum being present is low. Saving the fungicide application for as as close to tassel or white silking periods will be the best option resulting in the highest return on the fungicide investment. If you have a history and you know you have a susceptible hybrid coupled with a no-till situation, then the risk is higher and you need to evaluate the economics of doing an application of fungicide as early as V6. Remember, if you do a V6-V8 application of fungicide, conditions could stay conducive later in the season for tar spot. Those early applications will “burn out” by the time the tasseling period rolls around. So if you do put a fungicide spray on at V6, you might have to come back at VT with another application to protect plants during the reproductive phase, should we stay in favorable conditions for tar spot. Keep an eye on the weather and keep scouting!

More Tar Spot Information

  1. Tar spot Fact sheet
  2. Short Tar Spot Video
  3. Tar Spot Webinar 
  4. Corn Fungicide Efficacy Table

Wisconsin Corn Tar Spot Update – July 3, 2019

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Figure 1. Tarspotter risk predictions for the state of Wisconsin on July 3, 2019.

Figure 1 shows the calculated risk from Tarspotter for July 3, 2019, for various locations in Wisconsin. Figure 2 shows the risk for locations in southern and south-central Wisconsin. As you can see, the present risk remains generally high for tar spot development in all locations examined. This is due to the fact that the weather continues to be relatively wet and humid for the past 30 days across the entire state. Tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period. We have been right in the zone for conducive conditions for this disease.

We have also spent the last few days scouting corn in Walworth Co., Grant Co., and Lafayette Co. Some of these fields are planted to known tar spot-susceptible hybrids and planted in fields with a history of the disease. We have been unable to find any symptoms of tar spot. Fields generally look disease free with just a bit of Anthracnose, which is common this time of year.

The Recommendation

Figure 2. Tarspotter risk predictions for southern Wisconsin on July 3, 2019.

While weather continues to be conducive for tar spot, evaluate the likelihood that tar spot might develop early in your field. Remember, if you have no history of the disease, then the likelihood of local inoculum being present is low. Saving the fungicide application for later in the season might be a better option. If you have a history and you know you have a susceptible hybrid coupled with a no-till situation, then the risk is higher and you need to evaluate the economics of doing an application of fungicide as early as V6. Remember, if you do a V6-V8 application of fungicide, conditions could stay conducive later in the season for tar spot. Those early applications will “burn out” by the time the tasseling period rolls around. So if you do put a fungicide spray on at V6, you might have to come back at VT with another application to protect plants during the reproductive phase, should we stay in favorable conditions for tar spot. Keep an eye on the weather and keep scouting!

More Tar Spot Information

  1. Tar spot Fact sheet
  2. Short Tar Spot Video
  3. Tar Spot Webinar 
  4. Corn Fungicide Efficacy Table

Wisconsin Tar Spot Update – June 25, 2019

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Figure 1. Tarspotter risk predictions for the state of Wisconsin on June 25, 2019.

Figure 1 shows the calculated risk from Tarspotter for June 25, 2019, for various locations in Wisconsin. Figure 2 provides a zoomed view for southern and south-central Wisconsin. As you can see, the present risk is very high for tar spot development in all locations examined. This is due to the fact that the weather continues to be relatively cool and wet for the past 30 days across the entire state. Tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period. We have been right in the zone for conducive conditions for this disease.

The Recommendation

Figure 2. Tarspotter risk predictions for southern Wisconsin on June 25, 2019.

While weather continues to be conducive for tar spot, evaluate the likelihood that tar spot might develop early in your field. Remember, if you have no history of the disease, then the likelihood of local inoculum being present is low. Saving the fungicide application for later in the season might be a better option. If you have a history and you know you have a susceptible hybrid coupled with a no-till situation, then the risk is higher and you need to evaluate the economics of doing an application of fungicide as early as V6. Remember, if you do a V6-V8 application of fungicide, conditions could stay conducive later in the season for tar spot. Those early applications will “burn out” by the time the tasseling period rolls around. So if you do put a fungicide spray on at V6, you might have to come back at VT with another application to protect plants during the reproductive phase, should we stay in favorable conditions for tar spot. Keep an eye on the weather and keep scouting!

More Tar Spot Information

  1. Tar spot Fact sheet
  2. Short Tar Spot Video
  3. Tar Spot Webinar 
  4. Corn Fungicide Efficacy Table

Tar Spot on My Mind

Figure 1. Tarspotter risk predictions for the state of Wisconsin on June 19, 2019.

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Tar spot seems to be on everyone’s mind now that corn planting is nearing the finish line. The challenging spring and wet weather has folks now focused on the various disease issues that might be in front of us if we stay in this cool and rainy pattern in Wisconsin. I addressed this concern in an article earlier this season, and tar spot is certainly a disease that could be significant if the weather stays wet and cool.

As many are aware, we have worked with a group of plant pathologists in the Midwest during the winter of 2019 to develop a tar spot prediction tool. The model that runs the tool is based on data from the Arlington Agricultural Research Station located in Arlington, WI and data from a single location in Michigan. Data from several fungicide trials were used to generate probability-based prediction models for tar spot epidemics. The framework of the models follows that of our previous models for soybean, which run the Sporecaster application. However, the weather information and predictor variables have been changed based on our work in corn in 2018. While the preliminary smartphone application, called Tarspotter, has been programmed it needs to be validated in replicated studies and in observational studies to determine the accuracy. Thus, Tarspotter is not publicly available and is being tested by extension and industry colleagues during the 2019 season. With that said, I will provide an outlook based on the calculated risk and my interpretation of the risk for Wisconsin during the season.

What is the Present Risk For Tar Spot Development?

Figure 2. Tarspotter risk predictions for southern Wisconsin on June 19, 2019.

Figure 1 shows the calculated risk from Tarspotter for June 19, 2019, for various locations in Wisconsin. Figure 2 provides a zoomed view for southern and south-central Wisconsin. As you can see, the present risk is very high for tar spot development in all locations examined. This is due to the fact that the weather has been extremely cool and wet for the past 30 days across the entire state. Tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period. We have been right in the zone for conducive conditions for this disease.

Should I Spray Fungicide Now on My Corn in Wisconsin?

The short answer is NO! While the weather has been conducive for tar spot, corn is still very young. We would not recommend spraying corn for any foliar disease any earlier than V6. In fact, I would urge folks to hold off as long as they can toward VT to make a fungicide application. Some things to consider in this decision to spray fungicide for tar spot at V6 would be the field history. Has tar spot ever been found in a field? If not, then there is presumed to be no local inoculum available for infection, even if conditions are conducive (remember that the disease triangle is important). In fields with no history of tar spot, scout regularly and monitor the risk maps and what we are recommending based on our observations. You might be able to hold off longer on that fungicide application and get it on at VT where a return on your fungicide investment is more likely. If you have had a history of tar spot and you know that you have a hybrid that is more susceptible and there is a large amount of infested residue, then you should monitor this situation closely. Remember that the first 4 or 5 leaves on a corn plant don’t contribute to yield. In fact the corn plant will soon get rid of those leaves, as the adult leaves emerge and the stalk elongates. Thus protecting leaves prior to V6 or V8 really doesn’t make a lot of economic sense (let alone biological sense for the Midwest). If you have had a history of the disease, conditions remain conducive, and the crop is V6-V8 or later, a fungicide application might make sense. Weigh the economics of this application and shop around. There are many products that have demonstrated decent efficacy toward tar spot. You can find our 2018 fungicide test summaries by CLICKING HERE and scrolling down to pages 2-7.

The Summary

While weather has been conducive for tar spot over the last month, do a little homework and evaluate the likelihood that tar spot might develop early in your field. Remember, if you have no history of the disease, then the likelihood of local inoculum being present is low. Saving the fungicide application for later in the season might be a better option. If you have a history and you know you have a susceptible hybrid coupled with a no-till situation, then the risk is higher and you need to evaluate the economics of doing an application of fungicide as early as V6. Remember, if you do a V6-V8 application of fungicide, conditions could stay conducive later in the season for tar spot. Those early applications will “burn out” but the time the tasseling period rolls around. So if you do put a fungicide spray on at V6, you might have to come back at VT with another application to protect plants during the reproductive phase, should we stay in favorable conditions for tar spot. Keep an eye on the weather and keep scouting!

More Tar Spot Information

  1. Tar spot Fact sheet
  2. Short Tar Spot Video
  3. Tar Spot Webinar 
  4. Corn Fungicide Efficacy Table