What to Expect from Stalk Rot and Mycotoxins in Severely Diseased and Damaged Corn

Damon L. Smith, Extension Field Crops Pathologist, University of Wisconsin-Madison

Corn is looking pretty rugged in many areas of the Wisconsin corn belt. Areas in southern, southwestern, and south-central Wisconsin have experienced major foliar disease epidemics including the new disease, tar spot. Areas in eastern, east-central, and south-central Wisconsin have also seen heavy flooding and storm damage in corn fields. We have seen fields severely diseased, experiencing stalk rot, lodged, flooded – you name it, it has been a challenging finish to a season that had much promise.

How is tar spot affecting stalk integrity?

Figure 1. Stalks lodged due to reduced stalk integrity.

For corn foliar diseases such as northern corn leaf blight (NCLB) and gray leaf spot (GLS), it is well known that high severity can lead to stalk integrity issues. As foliage is damaged, less photosynthetic capacity is available from the leaves to produce carbohydrates for the plant. To fill an ear of corn, carbohydrates are needed from somewhere. In corn where the foliage is significantly damaged, the stalks become a considerable source to fill out the ear (a sink for nutrients). This leaves the stalk tissues devoid of carbohydrates leading to cell death and subsequent colonization of the stalk by fungal pathogens who are taking the opportunity to feed on a weak stalks. Thus, it isn’t uncommon to see stalk rots like Gibberella stalk rot, Fusarium stalk rot or Anthracnose stalk rot at higher incidence where high foliar disease pressure was observed (Fig.1). Where you find stalk rots, you often find root rots caused by the same pathogens. Root rot and stalk rot often go hand-in-hand.

Other causes for loss in stalk integrity can include large ears (nutrient sinks) that the plant can’t fill out, without using some of the stalk resources. In 2018 we saw many fields where the crop was moving through growth stages quickly and setting what appeared to be good yields. However, weather conditions changed midseason, with wet weather and more cloud cover, combined with nitrogen issues in some fields. This led to large ears that needed to be filled out, with again, limited photosynthetic capacity. The stalks were scavenged for carbohydrate, leaving them, again, with limited integrity.

Figure 2. An entire field lodged due to significant stalk rot

Now throw in some tar spot. Yet, another foliar disease that can limit photosynthetic capacity of the corn plant. We have observed many fields with significant stalk integrity issues. Whether just tar spot, or tar spot combined with GLS, NLCB, and/or stalk scavenging just for carbohydrates – stalks are in bad shape in many areas of Wisconsin. This is resulting in significant lodging issues in many fields, especially those hit with bad storms over the last several weeks (Fig. 2). Harvesting fields with low stalk integrity early will be key to protect yield potential. Conduct a “pinch” test or “push” test to determine which field have lower stalk integrity. Simply pinch stalks or push stalks to a 30 degree angle. Those plant that are soft and easily pinch or don’t pop back up after pushing, have stalk integrity issues. If 30-50% or more of these plants are identified with stalk integrity problems, they should be harvested first, to prevent yield losses from lodging.

What about tar spot, lodged corn, and mycotoxins?

Mycotoxins have not been implicated in the organisms reported to cause tar spot in Latin America. However, that doesn’t mean that other organisms that cause mycotoxins might not be present on harvested grain or silage. As plants dry down they can no longer actively fight fungal infection. We have looked at many brown and drying leaf samples from corn plants with tar spot. We do find many other fungal organisms, including Fusarium-organisms, which can produce mycotoxins. So while tar spot itself may not lead to mycotoxins, opportunistic fungi that colonize secondarily may result in elevated mycotoxin levels.

In addition, corn that has lodged and is in contact with the wet and saturated ground is at risk of being colonized by organisms that produce mycotoxins. Many of the known mycotoxin-producing fungi are found in the soil and on residue on the surface of the soil. If lodged corn is in contact with the ground and there is good moisture, it is possible that the ear and plant are being colonized and mycotoxins are being produced. So while your combine might be able to pick a plant up and harvest the ear, beware that it might be heavily colonized with organisms that produce mycotoxins. If taking corn for silage, lodged plants run the risk of significant hygiene issues in the bunker, including mycotoxins issues.

Where else can mycotoxins come from?

Figure 3. Diplodia ear rot on an ear of corn.

Corn ears don’t have to touch the ground to be infected with ear-rot fungi, they can also be colonized by ear-rot fungi through the silks. Given the kind of crazy year we have had, ear rot might be a significant concern in fields that saw erratic weather this season. Ear rots caused by fungi in the groups Diplodia (Fig. 3), Fusarium, and Gibberella will be the most likely candidates to watch for as you begin harvest.  Fusarium and Giberrella are typically the most common fungi on corn ears in Wisconsin.  This group of fungi not only damage kernels on ears, but can also produce mycotoxins.  The toxins of main concern produced by these organisms are fumonisins and vomitoxin and can threaten livestock that are fed contaminated grain.  Thus grain buyers actively test for mycotoxins in corn grain, and feed managers monitor silage for mycotoxin levels to be sure they are not above certain action levels established by the U.S. Food and Drug Administration (FDA).

The FDA has established maximum allowable levels of fumonisins in corn and corn products for human consumption ranging from 2-4 parts per million (ppm).  For animal feed, maximum allowable fumonisin levels range from 5 ppm for horses to 100 ppm for poultry. Vomitoxin limits are 5 ppm for cattle and chickens and 1 ppm for human consumption.

For more information about ear rots and to download a helpful fact sheet produced by a consortium of U.S. corn pathologists, CLICK HERE.

How do I reduce mycotoxin risks at harvest?

Before harvest, farmers should check their fields to see if moldy corn is present. Sample at least 10-20 ears in five locations of your field. Pull the husks back on those ears and observe how much visible mold is present. If 30% or more of the ears show signs of Gibberella or Fusarium ear rot then testing of harvested grain is definitely advised. If several ears show 50-100% coverage of mold testing should also be done. Observe grain during harvest and occasionally inspect ears as you go. This will also help you determine if mycotoxin testing is needed.

If substantial portions of fields appear to be contaminated with mold, it does not mean that mycotoxins are present and vice versa. For example, Diplodia ear rot does not produce mycotoxins. However, if you are unsure, then appropriate grain samples should be collected and tested by a reputable lab.  Work with your corn agronomist or local UW Extension agent to ensure proper samples are collected and to identify a reputable lab.

For more information on mycotoxins and to download a fact sheet, CLICK HERE.

Helpful information on grain sampling and testing for mycotoxins can be found by CLICKING HERE.

For a list of laboratories that can test corn grain for mycotoxins, consult Table 2-16 in UW Extension publication A3646 – Pest Management in Wisconsin Field Crops.

How should I store corn from fields with ear rots and mold?

If you observe mold in certain areas of the field during harvest, consider harvesting and storing that corn separately, as it can contaminate loads; the fungi causing the moldy appearance can grow on good corn during storage.  Harvest corn in a timely manner, as letting corn stand late into fall promotes Fusarium and Gibberella ear rots.  Avoid kernel damage during harvest, as cracks in kernels can promote fungal growth.  Also, dry corn properly as grain moisture plays a large roll in whether corn ear rot fungi continue to grow and produce mycotoxins.  For short term storage over the winter, drying grain to 15% moisture and keeping grain cool (less than 55F) will slow fungal growth.  For longer term storage and storage in warmer months, grain should be dried to 13% moisture or less. Fast, high-heat drying is preferred over low-heat drying. Some fungi can continue to grow during slow, low-heat drying. Also, keep storage facilities clean.  Finally, mycotoxins are extremely stable compounds: freezing, drying, heating, etc. do not degrade mycotoxins that have already accumulated in grain. While drying helps to stop fungal growth, any mycotoxins that have already accumulated prior to drying will remain in that grain. The addition of acids and reducing pH can reduce fungal growth but will not affect mycotoxins that have already accumulated in harvested grain.

For more information on properly storing grain and to download a fact sheet on the subject, CLICK HERE.

References

Munkvold, G.P. and White, D.G. Compendium of Corn Diseases, 4th Edition. APS Press.

In addition, This article is a compilation of the following previously written resources:

Smith, D.L. 2016. Wisconsin Late-Season Corn Disease Update. http://fyi.uwex.edu/fieldcroppathology/2016/09/07/wisconsin-late-season-corn-disease-update/.

Smith, D.L. and Mitchell, P. D. 2016. Wet Wisconsin: Moldy Corn and Crop Insurance. http://ipcm.wisc.edu/blog/2016/09/wet-wisconsin-moldy-corn-and-crop-insurance/.

 

 

Corn Stalk Rots and Ear Rots: A Double Whammy for Wisconsin Corn Farmers

Damon L. Smith, Extension Field Crops Pathologist, University of Wisconsin-Madison

Figure 1. Anthracnose stalk rot symptoms in a cut corn stalk.

Figure 1. Anthracnose stalk rot symptoms in a cut corn stalk.

The 2016 growing season is going to end with many challenges for Wisconsin farmers. The excessively wet weather has slowed or ended harvest of corn silage and grain harvest has barely started in much of the state. Couple this with warm and wet weather is August and we have a double whammy of stalk rot and ear rot issues to contend with this fall.

What is the Primary Stalk Rot Issue in Wisconsin?

Anthracnose stalk rot (Fig. 1) has been a major concern for Wisconsin corn growers this season. Anthracnose stalk rot is typically worse in fields in a corn-on-corn rotation, and/or no-tilled, and planted to a susceptible hybrid. We have observed several fields with significant lodging and wind damage where anthracnose stalk rot has advanced quickly (Fig. 2). In other fields lodging has been minimal, but some anthracnose stalk rot can be found. In addition, to stalk rot anthracnose, we have also observed Fusarium stalk rot and Gibberella stalk rot. The occurrence of these stalk rots has been much less than that of anthracnose stalk rot.

Figure 2. Corn field with considerable lodging due to anthracnose stalk rot.

Figure 2. Corn field with considerable lodging due to anthracnose stalk rot.

Why did stalk rots start so early in 2016?

The late onset of northern corn leaf blight (NCLB) this season likely contributed to increased stalk rot this season. It has been documented that late season increase in leaf blight diseases, such as NCLB, can cause increased stress that leads to higher levels of stalk rot. Also, ears were large and yield potential appeared high this season. These large yield potentials may have led to increased scavenging of resources from stalks leading to more stalk stress. These stress issues, combined with excessively moist and mild conditions, likely led to the occurrence of higher levels of stalk rot in 2016.

What should I do if I have a field with stalk rot?

In fields were stalk rot is an issue, harvest as early as possible to avoid yield losses from lodging. Delaying harvest will increase the likelihood of lodging which will increase harvesting issues. Once conditions dry enough to allow combines to run, fields with higher levels of stalk rot and/or lodging should be prioritized for harvest.

What should I do about stalk rot for next season?

Management of anthracnose stalk rot (and for any of the stalk rots) is multi-faceted. First, choose hybrids with the best resistance available. Hybrids that also have good resistance to foliar diseases will also offer an advantage when managing stalk rot, as foliar disease can stress corn plants and lead to increased risk of anthracnose stalk rot. Cultural practices such as crop rotation and tillage to manage surface residue can also help. Other practices that reduce plant stress such as balanced fertilization, proper planting population, providing suitable drainage, and using well adapted hybrids for your location will reduce the risk of anthracnose stalk rot.

Fungicides are not recommended for managing anthracnose stalk rot. Attempts to use fungicides to manage anthracnose stalk rot often result in high variability and little translation to a yield advantage. In 2015 we conducted a corn fungicide trial where anthracnose stalk rot was detected at harvest. While higher levels of stalk rot were observed, and some treatments did lead to a significant reduction in stalk rot severity, no differences in lodging or yield were identified among the treatments. To view results of this 2015 trial, click here and scroll down to pages 2 and 3.

What corn ear rots and mycotoxins should I watch out for?

Figure 1. Moldy growth on a corn ear caused by the Diplodia ear rot fungus.

Figure 3. Moldy growth on a corn ear caused by the Diplodia ear rot fungus.

With all the wet weather late in the 2016 season, several ear rots have appeared in corn around much of the state. Ear rots caused by fungi in the groups Diplodia (Fig. 3), Fusarium, and Gibberella (Fig. 4) will be the most likely candidates to watch for as you begin harvest.  Fusarium and Giberrella are typically the most common fungi on corn ears in Wisconsin.  This group of fungi not only damage kernels on ears, but can also produce toxins called mycotoxins.  These toxins (fumonisins and vomitoxin) can threaten livestock that are fed contaminated grain.  Thus grain buyers actively test for mycotoxins in corn grain to monitor mycotoxin levels to be sure they are not above certain action levels established by the U.S. Food and Drug Administration (FDA).

The FDA has established maximum allowable levels of fumonisins in corn and corn products for human consumption ranging from 2-4 parts per million (ppm).  For animal feed, maximum allowable fumonisin levels range from 5 ppm for horses to 100 ppm for poultry. Vomitoxin limits are 5 ppm for cattle and chickens and 1 ppm for human consumption.

Figure 4. Symptoms and signs of Gibberella ear rot of corn.

Figure 4. Symptoms and signs of Gibberella ear rot of corn.

Diplodia ear rot (Fig. 5) is not as common in Wisconsin. However, the weather pattern this season was favorable for occurrence of this disease. This disease is often more severe in years where dry weather precedes silking, followed by wet weather immediately after silking. Diplodia ear rot does not produce mycotoxins. While this disease does not result in mycotoxin accumulation, it can cause grain yield loss and quality issues.

For more information about ear rots and to download a helpful fact sheet produced by a consortium of U.S. corn pathologists, CLICK HERE.

Figure 5. Signs and symptoms of the Diplodia ear rot fungus inside a split corn ear.

Figure 5. Signs and symptoms of the Diplodia ear rot fungus inside a split corn ear.

How do I reduce mycotoxin risks at harvest?

Before harvest, farmers should check their fields to see if moldy corn is present. Sample at least 10-20 ears in five locations of your field. Pull the husks back on those ears and observe how much visible mold is present. If 30% or more of the ears show signs of Gibberella or Fusarium ear rot then testing of harvested grain is definitely advised. If several ears show 50-100% coverage of mold testing should also be done. Observe grain during harvest and occasionally inspect ears as you go. This will also help you determine if mycotoxin testing is needed.

If substantial portions of fields appear to be contaminated with mold, it does not mean that mycotoxins are present and vice versa. Remember, Diplodia ear rot does not produce mycotoxins. However, if you are unsure, then appropriate grain samples should be collected and tested by a reputable lab.  Work with your corn agronomist or local UW Extension agent to ensure proper samples are collected and to identify a reputable lab.  If tests show high levels of mycotoxins in grain, that grain SHOULD NOT BE BLENDED with non-contaminated corn.

For more information on mycotoxins and to download a fact sheet, CLICK HERE.

Helpful information on grain sampling and testing for mycotoxins can be found by CLICKING HERE.

For a list of laboratories that can test corn grain for mycotoxins, consult Table 2-16 in UW Extension publication A3646 – Pest Management in Wisconsin Field Crops.

How should I store corn from fields with ear rots and mold?

If you observe mold in certain areas of the field during harvest, consider harvesting and storing that corn separately, as it can contaminate loads; the fungi causing the moldy appearance can grow on good corn during storage.  Harvest corn in a timely manner, as letting corn stand late into fall promotes Fusarium and Gibberella ear rots.  Avoid kernel damage during harvest, as cracks in kernels can promote fungal growth.  Also, dry corn properly as grain moisture plays a large roll in whether corn ear rot fungi continue to grow and produce mycotoxins.  For short term storage over the winter, drying grain to 15% moisture and keeping grain cool (less than 55F) will slow fungal growth.  For longer term storage and storage in warmer months, grain should be dried to 13% moisture or less. Fast, high-heat drying is preferred over low-heat drying. Some fungi can continue to grow during slow, low-heat drying. Also, keep storage facilities clean.  Finally, mycotoxins are extremely stable compounds: freezing, drying, heating, etc. do not degrade mycotoxins that have already accumulated in grain. While drying helps to stop fungal growth, any mycotoxins that have already accumulated prior to drying will remain in that grain. The addition of acids and reducing pH can reduce fungal growth but will not affect mycotoxins that have already accumulated in harvested grain.

For more information on properly storing grain and to download a fact sheet on the subject, CLICK HERE.

References

This article is a compilation of the following previously written resources:

Smith, D.L. 2016. Wisconsin Late-Season Corn Disease Update. http://fyi.uwex.edu/fieldcroppathology/2016/09/07/wisconsin-late-season-corn-disease-update/.

Smith, D.L. and Mitchell, P. D. 2016. Wet Wisconsin: Moldy Corn and Crop Insurance. http://ipcm.wisc.edu/blog/2016/09/wet-wisconsin-moldy-corn-and-crop-insurance/.

Wisconsin Late-Season Corn Disease Update

Damon L. Smith, Extension Field Crops Pathologist, University of Wisconsin-Madison

Figure 1. Anthracnose stalk rot symptoms in a cut corn stalk.

Figure 1. Anthracnose stalk rot symptoms in a cut corn stalk.

NCLB and Anthracnose Stalk Rot

As corn silage harvest has begun and the corn grain crop is finishing, there have been some disease issues of note in Wisconsin. Northern corn leaf blight (NCLB) activity has picked up quickly over the last several weeks. This is due to the fact that the weather has become much cooler and has remained wet. These conditions are favorable for the fungus. You will remember that NCLB was observed very early this season. See my previous post on this topic by clicking here.The hotter and dryer weather we saw mid-season was not only good for corn growth, but it kept the NCLB pressure minimal during the critical time of silking and pollination. As stated in the fourth edition of the “Compendium of Corn Diseases” (Carson, 2016) direct yield losses from NCLB are typically minimal if infection is moderate or delayed until 6 weeks after silking. Therefore, the expected direct yield loss from NCLB in Wisconsin in 2016 is expected to be low, due to its late onset.

Figure 2. Corn field with considerable lodging due to anthracnose stalk rot.

Figure 2. Corn field with considerable lodging due to anthracnose stalk rot.

Certainly, there are other issues to consider with this late onset of NCLB. Dry-down will be accelerated. If you have a considerable epidemic in silage corn, then it would be advisable to try to chop as quickly as possible or consider taking the crop as high-moisture corn. Another issue to consider is the fact that a late-season NCLB epidemic can increase the risk for stalk rot issues. We have observed earlier than typical onset of anthracnose stalk rot this season (Fig. 1). Anthracnose stalk rot has been observed in many fields, with a range in severity dependent on the hybrid resistance and field history. Fields in a corn-on-corn rotation, and/or no-tilled, and planted to a susceptible hybrid are at high risk of severe symptoms. We have observed several fields with significant lodging and wind damage where anthracnose stalk rot has advanced quickly (Fig. 2). In other fields lodging has been minimal, but some anthracnose stalk rot can be found.

Management of anthracnose stalk rot is multi-faceted. First, choose hybrids with best resistance available. Hybrids that also have good resistance to foliar diseases will also offer an advantage when managing stalk rot, as foliar disease can stress corn plants and lead to increased risk of anthracnose stalk rot. Cultural practices such as crop rotation and tillage to manage surface residue can also help. Other practices that reduce plant stress such as balanced fertilization, proper planting population, providing suitable drainage, and using well adapted hybrids for your location will reduce the risk of anthracnose stalk rot. Finally, in fields were stalk rot is an issue, harvest as early as possible to avoid yield losses from lodging.

Fungicides are not recommended for managing anthracnose stalk rot. Attempts to use fungicides to manage anthracnose stalk rot often result in high variability and little translation to a yield advantage. In 2015 we conducted a corn fungicide trial where anthracnose stalk rot was detected at harvest. While higher levels of stalk rot were observed, and some treatments did lead to a significant reduction in stalk rot severity, no differences in lodging or yield were identified among the treatments. To view results of this 2015 trial, click here and scroll down to pages 2 and 3.

Bacterial leaf streak – A new disease of corn in the U.S.

Bacterial leaf streak (BLS) of corn has recently been reported for the first time on corn in the U.S. The first reports were in Nebraska with subsequent reports coming in from other states in the U.S. corn belt including Iowa, Illinois, Colorado, and Kansas. Efforts are underway in Wisconsin to monitor for the disease. As of this writing, BLS has not been found in Wisconsin. However, survey and scouting efforts are continuing, to monitor for this disease.

Bacterial leaf streak is caused by a bacterium named Xanthomonas vasicola pv. vasculorum. Very little is understood about this disease on corn, as it is so new. This pathogen presents no risk to humans or animals and there is little evidence to suggest that it will have an adverse effect on corn yield and quality. You can click here to read the USDA APHIS Statement on Xanthomonas vasicola pv. vasculorum. To learn more about the disease and to watch a video by Dr. Tamra Jackson-Ziems at the University of Nebraska CLICK HERE. Helpful information and hints on initially diagnosing BLS can be found HERE.

If you suspect that you have BLS in your corn crop in Wisconsin, leaf samples of corn plants can be sent in a sealed plastic bag with NO added moisture to the University of Wisconsin Plant Disease Diagnostic Clinic (PDDC). Information about the clinic and how to send samples can be found by CLICKING HERE.

References

Esker, P. 2016. Anthracnose stalk rot: in “Farmers Guide to Corn Diseases” Edited by: K. Wise, D. Mueller, A. Sisson, D. Smith, C. Bradley, and A. Robertson. APS PRESS.

M.L. Carson. 2016. Northern Corn Leaf Blight: in “Compendium of Corn Diseases, Fourth Edition.” Edited by: G.P. Munkvold and D.G. White. APS PRESS.

 

Disease Considerations for Soybean and Corn Harvest

Damon L. Smith – Extension Field Crops Pathologist, University of Wisconsin

As the fall is approaching and crop harvest plans are being made, it is important to continue to assess disease issues in corn and soybean. These assessments aren’t being made in order to make plans for in-field management, but to potentially improve the quality of grain that is harvested.

Some Diseases to Consider in Corn at Harvest

Figure 1. Gibberella stalk rot on corn. Severe stalk rot on the left and less severe stalk rot on the right.

Figure 1. Gibberella stalk rot on corn. Severe stalk rot on the left and less severe stalk rot on the right.

Now is the best time to begin scouting corn for stalk rot issues and also fungal ear rot potential. Diseases such as Anthracnose stalk rot and Gibberella stalk rot are becoming apparent in corn.  Inspect the stalks integrity on the outside.  Be sure to squeeze the outside of the stalk to gauge the potential severity of the rot on the inside of the stalk.  Cut a few stalks from diverse areas of the field to see how rotted stalks might be. In figure 1, the stalk on the left has a severe case of Gibberella stalk rot, while the stalk on the right is far less rotted.  The more severely rotted stalks are, the more likely they will lodge.  Therefore timely harvest is important. Growers should target harvest on fields with severe stalk rot before fields that have less stalk rot, in order to minimize harvest losses due to lodging.

Figure 2. Diplodia ear rot.

Figure 2. Diplodia ear rot.

Ear rots can also be an issue at harvest time. Fusarium ear rot, Gibberella ear rot, and Diplodia ear rot (Fig. 2) are just a few that can damage corn in Wisconsin. Ear rots are becoming evident in some corn I have scouted in the last week or so.  It will be critical to check fields in the next several weeks in order to make decisions on what fields to harvest first.  Harvest priority should be placed on fields with a high level of ear rot.  As corn stands late into the fall, certain ear rot fungi can continue to grow, damage ears, and cause increases in mycotoxins in grain. The quicker these fields dry and can be harvested, the more likely the losses due to ear rot and mycotoxin accumulation can be minimized.

Soybean Disease Considerations at Harvest

Figure 3. Sclerotia of the white mold fungus inside a soybean stem.

Figure 3. Sclerotia of the white mold fungus inside a soybean stem.

In Wisconsin, the main disease to consider when making harvest plans in soybean is white mold. White mold is present in some soybean fields in the state and has caused considerable damage in a few of those fields. Remember that the white mold fungus not only causes stem blight and damage, but also causes the formation of sclerotia (fungal survival structures that look like rat droppings) on and in soybean stems (Fig. 3). These scelrotia serve as the primary source of fungal inoculum for the next soybean crop. They also get caught in combines during harvest. These sclerotia can then be spread in combines to other fields that might not be infested with the white mold fungus.  Therefore, it is important to harvest non-infested soybean fields first, followed by white mold-infested fields, to be sure the combine does not deposit any residual sclerotia in the non-infested fields.  If this is not an option and you must harvest white mold infested fields before non-infested fields, be sure to clean the combine between fields.

For more information about white mold management in soybean you can click here and scroll down to “white mold” or watch a video by clicking here.