2020 Wisconsin Field Crops Pathology Fungicide Tests Summary Now Available

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Brian Mueller, Assistant Field Researcher, Department of Plant Pathology, University of Wisconsin-Madison

Each year the Wisconsin Field Crops Pathology Program conducts a wide array of fungicide tests on alfalfa, corn, soybeans, and wheat. These tests help inform researchers, practitioners, and farmers about the efficacy of certain fungicide products on specific diseases. This year we were a bit delayed in publishing the report, due to the challenges of COVID-19. However, we do appreciate your patience and hope you find the report useful in making decisions for the 2021 field season.

The 2020 Wisconsin Field Crops Fungicide Test Summary is available by clicking here. These tests are by no means an exhaustive evaluation of all products available, but can be used to understand the general performance of a particular fungicide in a particular environment. Keep in mind that the best data to make an informed decision, come from multiple years and environments. To find fungicide performance data from Wisconsin in other years, visit the Wisconsin Fungicide Test Summaries page. You can also consult publication A3646 – Pest Management in Wisconsin Field Crops to find information on products labeled for specific crops and efficacy ratings for particular products. Additional efficacy ratings for some fungicide products for corn foliar fungicidessoybean foliar and seed-applied fungicides, and wheat foliar fungicides can be found on the Crop Protection Network website.

Mention of specific products in these publications are for your convenience and do not represent an endorsement or criticism. Remember that this is by no means a complete test of all products available.  You are responsible for using pesticides according to the manufacturers current label. Some products listed in the reports referenced above may not actually have an approved Wisconsin pesticide label. Be sure to check with your local extension office or agricultural chemical supplier to be sure the product you would like to use has an approved label.  Follow all label instructions when using any pesticide. Remember the label is the law!

Wisconsin Corn Tar Spot Update – July 29, 2020

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

No new county level first-detects of tar spot in Wisconsin have been added to the national tar spot map this week (Fig. 1). This week we are seeing just a a handful of new counties added in the Midwest corn belt. Note that all county level confirmations for 2020 are in areas where the disease has been previously reported.

Figure 1. Corn IpmPIPE tar spot confirmations for U.S. Counties as of July 29, 2020. Grey shading indicates past confirmation in the county. Orange shading indicates a positive confirmation for 2020. Yellow shading indicates a probable positive.

Figure 2. Tar Spot risk for various locations in Wisconsin for July 29, 2020.

Figure 2 shows the calculated risk from Tarspotter (our smartphone prediction tool for tar spot) for July 29, 2020, for various locations in Wisconsin. The action threshold for high risk is 75% using the updated Tarspotter model for 2020. As you can see, the present risk has continued to decline overall for the entire state with the exception of the far Northwest, where there is not a history of tar spot. Continued dryer and warm weather is less conducive for the development of tar spot, thus we see the risk continuing to decline. So while we can find tar spot in handful of fields, progress of the disease is slow. Remember, tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period, accompanied by extended periods of leaf wetness caused by dew, rain, or irrigation events. The newest Tarspotter tool captures all of these aspects and balances these in the calculations of risk in the map above.

The Recommendation

Tassels and silks have been out in the southern portion of the state. We are now in the tail-end of the window of opportunity for a fungicide application if you feel the risk for disease, including tar spot, is warranted. While tar spot is slow to develop, we have seen gray leaf spot (GLS) developing in the lower canopy and moving up. We continue to also scout for southern rust, but have had no confirmations of this disease so far in Wisconsin.

Do some scouting and check weather reports. If it is dry in your area and has been hot, then no disease may be present. You might be able to hold off on that fungicide application. If it has been humid and rainy and you have some disease present in the lower canopy, then a fungicide application might be warranted. Now is the critical time to pay attention to disease development and make a final fungicide spray decision. See my previous post for more information about making the decision to spray fungicide on corn.

More Tar Spot Information

  1. Tar Spot Fact sheet (Updated for 2020!)
  2. Short Tar Spot Video
  3. Tar Spot Webinar 
  4. Corn Fungicide Efficacy Table

Wisconsin Corn Tar Spot Update – July 23, 2020

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

No new county level first-detects of tar spot in Wisconsin have been added to the national tar spot map this week (Fig. 1). This week we are seeing more counties being added now in Iowa, Illinois, Indiana, and Michigan. Note that all county level confirmations for 2020 are in areas where the disease has been previously reported.

 

Figure 1. Corn IpmPIPE tar spot confirmations for U.S. Counties as of July 23, 2020. Grey shading indicates past confirmation in the county. Orange shading indicates a positive confirmation for 2020.

 

Figure 2. Tar Spot risk for various locations in Wisconsin for July 23, 2020.

Figure 2 shows the calculated risk from Tarspotter (our smartphone prediction tool for tar spot) for July 23, 2020, for various locations in Wisconsin. The action threshold for high risk is 75% using the updated Tarspotter model for 2020. As you can see, the present risk has declined overall for most of the state with exceptions for south-central and far Northwest Wisconsin. Dryer and warmer weather is less conducive for the development of tar spot, thus we see the risk slowly declining. Remember, tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period, accompanied by extended periods of leaf wetness caused by dew, rain, or irrigation events. The newest Tarspotter tool captures all of these aspects and balances these in the calculations of risk in the map above.

The Recommendation

Tassels and silks are out in the southern portion of the state. We are now in the window of opportunity for a fungicide application if you feel the risk for disease, including tar spot, is warranted. While tar spot is slow to develop, we have seen gray leaf spot (GLS) developing in the lower canopy and moving up. Do some scouting and check weather reports. If it is dry in your area and has been hot, then no disease may be present. You might be able to hold off on that fungicide application. If it has been humid and rainy and you have some disease present in the lower canopy, then a fungicide application might be warranted. Now is the critical time to pay attention to disease development and make a fungicide spray decision. See my previous post for more information about making the decision to spray fungicide on corn.

More Tar Spot Information

  1. Tar Spot Fact sheet (Updated for 2020!)
  2. Short Tar Spot Video
  3. Tar Spot Webinar 
  4. Corn Fungicide Efficacy Table

Wisconsin Corn Tar Spot Update – July 14, 2020

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

Last week brought our first detect of tar spot in Wisconsin for the 2020 field season. This week we are seeing more counties being added now in Iowa and Indiana, with some additional non-confirmed reports from southwest Wisconsin. Figure 1, show the location of the confirmed detections, which are all in the previously recorded range of the tar spot pathogen.

Figure 1. Corn IpmPIPE tar spot confirmations for U.S. Counties as of July 14, 2020. Grey shading indicates past confirmation in the county. Orange shading indicates a positive confirmation for 2020.

Figure 2. Tar Spot risk for various locations in Wisconsin for July 14, 2020.

Figure 2 shows the calculated risk from Tarspotter (our smartphone prediction tool for tar spot) for July 14, 2020, for various locations in Wisconsin. Figure 3 shows the risk for locations in southern and south-central Wisconsin. The action threshold for high risk is 75% using the updated Tarspotter model for 2020. As you can see, the present risk is elevated in much of the southern and southwestern portion of the state, the areas where reports are coming in. This is due to the fact that the weather continues to be relatively wet and humid for the past 30 days with decent rainfall. Cooler conditions this week are also contributing to the rising risk. Tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period, accompanied by extended periods of leaf wetness caused by dew, rain, or irrigation events. The newest Tarspotter tool captures all of these aspects and balances these in the calculations of risk in the map above.

The Recommendation

Figure 3. Tar spot risk for the southern and south-central zones of Wisconsin for July 14, 2020.

Tassels are starting to peek or are out in the southern portion of the state. We are now in the window of opportunity for a fungicide application if you feel the risk for disease, including tar spot, is warranted. Do some scouting and check weather reports. If it is dry in your area and has been hot, then no disease may be present. You might be able to hold off on that fungicide application. If it has been humid and rainy and you have some disease present in the lower canopy, then a fungicide application might be warranted. See my previous post for more information about making the decision to spray fungicide on corn.

More Tar Spot Information

  1. Tar Spot Fact sheet (Updated for 2020!)
  2. Short Tar Spot Video
  3. Tar Spot Webinar 
  4. Corn Fungicide Efficacy Table

Wisconsin Corn Tar Spot Update – July 9, 2020

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

Tar spot has been detected on corn for the first time during the 2020 season, this week in Michigan and Indiana. In both situations these were fields with a history of the disease. Incidence and severity is very low, suggesting that the recent warm, dryer weather may be keeping tar spot in check at these sites. Figure 1, show the location of these detections.

Figure 1. Corn IpmPIPE tar spot confirmations for U.S. Counties as of July 9, 2020. Grey shading indicates past confirmation in the county. Orange shading indicates a positive confirmation for 2020.

Figure 2. Tar Spot risk for various locations in Wisconsin for July 9, 2020.

Figure 2 shows the calculated risk from Tarspotter (our smartphone prediction tool for tar spot) for July 9, 2020, for various locations in Wisconsin. Figure 3 shows the risk for locations in southern and south-central Wisconsin. The action threshold for high risk is 75% using the updated Tarspotter model for 2020. As you can see, the present risk is elevated in much of the southern portion of the state, with areas of high risk in the western half of the state. This is due to the fact that the weather continues to be relatively wet and humid for the past 30 days with decent rainfall across this portion of the state, despite relatively warm temperatures. Tar spot is favored by persistent temperatures between 60 and 70 F and high relative humidity averaging above 75% for a 30-day period, accompanied by extended periods of leaf wetness caused by dew, rain, or irrigation events. The newest Tarspotter tool captures all of these aspects and balances these in the calculations of risk in the map above.

We have been scouting fields in the southern portion of the state where there has been a history of tar spot. We have been unable to find any symptoms of tar spot thus far. Fields generally look disease free, which is common this time of year in Wisconsin.

The Recommendation

Figure 3. Tar spot risk for the southern and south-central zones of Wisconsin for July 9, 2020.

Even if weather turns more favorable for tar spot, evaluate the likelihood that tar spot might develop early in your field. Remember, if you have no history of the disease, then the likelihood of local inoculum being present is low. Saving the fungicide application for later in the season might be a better option. If you have a history and you know you have a susceptible hybrid coupled with a no-till situation, then the risk is higher and you need to evaluate the economics of doing an application of fungicide in early or mid v-stages. Remember, if you do a V6-V8 application of fungicide, conditions could stay conducive later in the season for tar spot. Those early applications will “burn out” by the time the tasseling period rolls around. So if you do (or did) put a fungicide spray on at V6-V8, you might have to come back at VT-R2 with another application to protect plants during the reproductive phase, should favorable conditions for tar spot persist. Keep an eye on the weather and keep scouting!

More Tar Spot Information

  1. Tar Spot Fact sheet (Updated for 2020!)
  2. Short Tar Spot Video
  3. Tar Spot Webinar 
  4. Corn Fungicide Efficacy Table

Insights on In-Season Corn Disease Management Decisions

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Corn is approaching the V6-V8 growth stages in regions of Wisconsin. With this, comes many questions about applying fungicide to control disease and preserve yield. What diseases are out there? What disease(s) should I focus on in-season? When should I spray? What should I spray? On top of these questions, we are also confronted with corn prices, which are less than ideal and create tight profit margins. So what should we consider for in-season disease management? Lets consider the diseases first, then the management decisions.

Figure 1. NCLB Lesions on a corn leaf

Northern Corn Leaf Blight (NCLB): The most diagnostic symptom of NCLB is the long, slender, cigar-shaped, gray-green to tan lesions that develop on leaves (Fig. 1).  Disease often begins on the lower leaves and works it way to the top leaves.  This disease is favored by cool, wet, rainy weather. Higher levels of disease might be expected in fields with a previous history of NCLB and/or fields that have been in continuous and no-till corn production. The pathogen over-winters in corn residue, therefore, the more residue on the soil surface the higher the risk for NCLB.  Management should focus on using resistant hybrids and residue management.  In-season management is available in the form of several fungicides that are labeled for NCLB. However, these fungicides should be applied at the early onset of the disease and only if the epidemic is expected to get worse.

While I hate talking about threshold levels for managing disease, it can be helpful in your decision making process to know what might be severe. While scouting look in the lower portion of the canopy. If some symptoms are present in the lower canopy, make a visual estimation of how frequent (percentage of plants with lesions) NCLB is in a particular area and how severe (how much leaf area is covered by NCLB lesions.  The lower leaves aren’t responsible for much yield accumulation in corn, but spores produced in NCLB lesions on these leaves can be splashed up to the ear leaves where disease can be very impactful. So by scouting the lower canopy and getting an idea of how much disease is present, you can “predict” what might happen later on the ear-leaves to make an informed spray decision.

Figure 2: A computer simulation of 5% NCLB severity on a corn leaf.

The other consideration you should make while scouting is the resistance rating that the hybrid has for NCLB. If it is rated as resistant, then NCLB severity might not be predicted to get very severe, while in  a susceptible hybrid, NCLB might be present on 50% or more of plants at high severity levels. Note however, that even if a hybrid is rated as resistant, it can still get some disease. Resistance isn’t immunity! If NCLB is present on on at least half the plants and severity is at least 5-10% and weather is forecast to be rainy and cool, a fungicide application will likely be needed to manage the disease. So what does 5% leaf severity look like? Figure 2 is a computer generated image that shows 5% of the corn leaf with NCLB lesions. You can use this image to train your brain to visually estimate how severe the disease might be on a particular leaf. As for fungicide choice and timing, I consider that further below.

Figure 3. Gray Leaf Spot lesions on a corn leaf.

Gray Leaf Spot (GLS): Gray leaf spot typically starts as small blocky or jagged, light tan spots. These can expand to become long, narrow, rectangular lesions (Fig. 3) that may have yellow or orange halos around them. Gray leaf spot is typically worse when temperatures are warm and humidity is frequently above 90%. Thus, in Wisconsin, this disease is generally more frequent in the southern and southeastern portion of the state. Conditions that favor GLS often do not favor NCLB. The GLS pathogen and NCLB pathogen have different temperature requirements. Yield loss from GLS will be the greatest if lesions develop on the ear-leaves right before and right after tasseling. Like NCLB, hybrids rated as susceptible will generally suffer greater yield reductions due to gray leaf spot. Management of GLS should focus on choosing hybrids with excellent resistance and managing corn residue. Corn residue allows the pathogen to overwinter.

Like NCLB, fungicides can also be used to manage gray leaf spot. However, these should be applied as preventative applications. Thus using the same rule of thumb to make a spray decision for GLS, as for NCLB, can help you make the decision to spray fungicide. As for fungicide choice and timing, I will also consider that further below.

Figure 4. Tar Spot Signs and Symptoms on Corn Leaves

Tar Spot: Tar spot is favored by cool conditions (60-70 F) and high relative humidity (averages above 75%). Over the last several seasons the tar spot pathogen, Phyllachora maydis, has been able to cause yield reductions in parts of the Midwest by itself. There seems to be no need for a second fungus, Monographella maydis to be present to cause “fisheye” symptoms along with severe necrosis and early dry down. In addition, work done in the Midwest shows that the tar spot fungus can overwinter on corn residue from the previous season. So like with NCLB and GLS fields with high levels of infested residue might be more prone to infection by the tar spot fungus.

Not a lot is known about hybrid resistance to tar spot. Losses as high as 50-60 bushels per acre have been recorded on some hybrids, while others in the same field were only marginally affect. Partial resistance might be present in Midwest on certain corn hybrids. However work is ongoing to understand which hybrids those might be. Fungicide applications have been shown to reduce tar spot levels. However, timing of application must coincide with disease onset and product choice is important. Mixed-mode-of action fungicides have been the most consistent in efficacy over the past several seasons (more on that below). More information on tar spot can be found by CLICKING HERE.

Figure 5. Eyespot symptoms on a corn leaf.

Eyespot: Eyespot typically first develops as very small pen-tipped sized lesions that appear water-soaked.  As the lesions mature they become larger (¼ inch in diameter) become tan in the center and have a yellow halo (Fig. 5).  Lesions can be numerous and spread from the lower leaves to upper leaves. In severe cases, lesions may grow together and can cause defoliation and/or yield reduction. Eyespot is also favored by cool, wet, and frequently rainy conditions.  No-till and continuous corn production systems can also increase the risk for eyespot, as the pathogen is borne on corn residue on the soil surface.  Management should focus on the use of resistant hybrids and residue management.  In-season management is available in the form of fungicides. Severity has to reach high levels (>50%) before this disease begins to impact yield. I often have eyespot present in my corn trials each year as we plant into continuous corn and use no-till. However, we typically do not see yield reductions from this disease even in non-sprayed plots. When scouting, note the disease and keep track of the severity. Again, fungicides should be applied early in the epidemic and may not be cost effective for this disease alone.

What Disease(s) Should I Focus on In-Season? Based on the information above, the greatest emphasis for Wisconsin should be placed on controlling NCLB, GLS, and tar spot. Most hybrids planted in Wisconsin will be resistant to eyespot.

What Should I Spray, and When Should I Spray for Corn Foliar Diseases In Wisconsin? Fungicide should be used to preserve yield and reduce disease level. There is no silver bullet fungicide out there for all corn diseases. However, there are many products which work well on a range of diseases. The Corn Fungicide Efficacy table lists products that have been rigorously evaluated in university research trials across the country. You can see there are several products listed that perform well on NCLB, GLS, and tar spot. So obviously, if a disease is present and you are trying to control the disease, you might expect more return on your investment, compared to simply spraying fungicide and hoping that there might be a yield increase.

Paul et al. (2011) conducted research to investigate the return on investment (ROI) of using fungicide at low and elevated levels of disease. Data from 14 states between 2002 and 2009 were used in the analysis. They looked at 4 formulations of fungicide products across all of these trials. I won’t go into detail about all products, but will focus on one here, pyraclostrobin. This is the active ingredient in Headline® Fungicide. In all, 172 trials were evaluated in the analysis and Paul et al. found that on average there was a 4.08 bu/acre increase in corn grain yield when pyraclostrobin was used. So there does appear to be some increase in yield with the use of fungicide over not treating across a range of environments. But in our current market, will this average gain cover the fungicide application? Today’s corn future price for September has a bushel of corn at $3.31.

Figure 6. Average yield preservation of QoI+DMI fungicide applications over not-treating across the U.S. corn belt at the V6, Vt, and V6+VT application timing.

Let’s Take a Closer Look at Corn Fungicide Return on Investment (ROI): While most of the early work on fungicide use in corn has focused on Headline® Fungicide, much of the industry has transitioned to using multi-mode-of-action products. These would be products mostly containing strobilurin (QoI), triazole (DMI), and/or succinate dehydrogenase inhibitor (SDHI) fungicides in the same jug. Details about fungicides and fungicide mode of action can be found on the Fungicides for Field Crops Information Page. Products such as Headline AMP® or Quilt Xcel® would fall into the QoI + DMI category. These combination products have also been fairly consistent in response in my fungicide trials. You can find summaries of these trial results here. If we consider using Quit Xcel® at 10.5 fl oz or Headline AMP® at 10.0 fl oz, the list pricing of the product alone ranges from $15/acre (Quit Xcel®) to $22/acre (Headline AMP®). If the fungicide will be flown on with an aircraft, that cost will likely add nearly $15/acre to the application. Thus, fungicide plus application would range from $30/acre to $37/acre. If we can sell corn at $3.31 per bushel then we would need to preserve 9 bu/acre to nearly 11 bu/a in yield over not treating to break even! In a recent analysis of corn yield data where DMI+QOI products were applied at the tasseling period (VT) across the entire corn belt, the average yield preservation over not treating was 7.20 bu/a (Fig. 6). This average projection is short of the 9 bu/a minimum we would need in the scenario above. However, the probability of preserving yield considering an average of 7.20 bu/a preserved yield over not treating and $3.31/bu corn price is around 30% (Fig. 7). This means that if we apply Quit Xcel® at 10.5 fl oz or Headline AMP® at 10.0 fl oz aerially, we will only break even 30% of the time with corn priced at $3.31 per bushel. If we can sell our corn for a better price or make the applications cheaper, then the odds will improve, but probably not climb above 70% even under the best case scenario. We do know that in Wisconsin, the odds of breaking even do improve if NCLB or GLS are active and increasing during the tasseling period. Get out there and scout!

Figure 7. Probability of Breaking Even Based on Data from Across the U.S. (VT Application Timing)

So What About Fungicide Application Timing? We can investigate this questionover the U.S. corn belt using the same dataset. Applications focused on an early (V6) timing, a VT-R2 timing, or a combination of V6 plus a VT-R2 application. Let’s again focus on the QoI+DMI products. Based on observations across the corn belt the V6 timing averaged almost 3 bu/a of preserved yield over not treating (Fig. 6). The VT application resulted in nearly 7.2 bu/a in preserved yield, while the two-pass program only offered a little over 8 bu/a. Clearly the higher average yield preservation occurs using a single application of fungicide at the VT-R2 timing. Wisconsin data has been consistent with this observation. Thus it is recommended that a single application of fungicide be used around the VT-R2 growth stages, when NCLB or GLS are active and increasing on or near the ear leaves.

What About Silage Corn and Ear Rot? When it comes to ear rot control and reducing the accumulation of mycotoxins in grain or silage corn, fungicide application should be made when white silks are out. Spores of fungicide that generally cause mycotoxin issues in the grain portion of corn will infect the plant through silks. Thus, apply fungicides during silking or with 5-10 days after silking starts, can be beneficial. Note though that if the goal is to target mycotoxin production and reduce deoxynivalenol (DON) accumulation in the grain portion of the plant, products containing a DMI component should be used. Results where QoI + DMI products were used on silage corn can be found in our 2019 Fungicide Test Summary.

Finally, be aware that in some cases, application of fungicide in combination with nonionic surfactant (NIS) at growth stages between V8 and VT in hybrid field corn can result in a phenomenon known as arrested ear development. The damage is thought to be caused by the combination of NIS and fungicide and not by the fungicide alone. To learn more about this issue, you can CLICK HERE and download a fact sheet from Purdue Extension that covers the topic nicely. Considering that the best response out of a fungicide application seems to be between VT-R2, and the issues with fungicide plus NIS application between V8 and VT, I would suggest holding off for any fungicide applications until at least VT. If you want to spray earlier than VT, keep the NIS out of the tank!

Summary

As we approach the critical time to make decisions about in-season disease management on corn, it is important to consider all factors at play while trying to determine if a fungicide is right for your corn operation in 2020. Here is what you should consider:

1) Corn hybrid disease resistance score for NCLB and GLS (and perhaps tar spot too, if known) – Resistant hybrids may not have high levels of disease which impact yield.

2) Get out of the truck and SCOUT, SCOUT, SCOUT – Consider how much disease and the level of severity of disease present in the lower canopy prior to tassel.

3) Consider weather conditions prior to, and during, the VT-R2 growth stages – if weather is conducive for NCLB, GLS, and or tar spot then disease may continue to increase in corn and a fungicide application might be necessary. If it turns out to be hot and dry, disease development will stop and a fungicide application would not be needed.

4) Consider your costs to apply a fungicide and the price you can sell your corn grain – Will you preserve enough yield out of the fungicide application to cover its cost?

5) Hold off with making your fungicide application in Wisconsin until corn has reached the VT-R2 growth stages – The best foliar disease control and highest likelihood of a positive ROI will occur when fungicide is applied during this timing when high levels of disease are likely.

6) Be aware that every time you use a fungicide you are likely selecting for corn pathogen populations that will become resistant to a future fungicide application – Make sure your fungicide application is worth this long-term risk. See fact sheet A3878 below for more information.

Other Resources

Video: Disease Management in Low-Margin Years (fast forward to 10:00 for corn information)

Fact Sheet: A4137 – Grain Management Considerations in Low-Margin Years

Fact Sheet: A3878 – Fungicide Resistance Management in Corn, Soybeans, and Wheat in Wisconsin

References

Groves, C.L., Kleczewski, N.M., Telenko, D.E.P., Chilvers, M.I., and Smith, D.L. 2020. Phyllachora maydisascospore release and germination from overwintered corn residue. Plant Health Progress. https://doi.org/10.1094/PHP-10-19-0077-RS.

Munkvold, G.P. and White, D.G., editors. 2016. Compendium of Corn Diseases, Fourth Edition. APS Press.

Paul, P. A., Madden, L. V., Bradley, C. A., Robertson, A. E., Munkvold, G. P., Shaner, G., Wise, K. A., Malvick, D. K., Allen, T. W., Grybauskas, A., Vincelli, P., and Esker, P. 2011. Meta-analysis of yield response of hybrid field corn to foliar fungicides in the U.S. Corn Belt. Phytopathology 101:1122-1132.

Wise, K., Mueller, D., Sisson, A., Smith, D., Bradley, and Robertson, A., editors. 2016. A Farmer’s Guide to Corn Diseases. APS Press.

Wise, K.A. and Smith, D.L., Freije, A., Mueller, D.S., Kandel, Y., Allen, T., Bradley, C.A., Byamukama, E., Chilvers, M., Faske, T., Friskop, A., Hollier, C., Jackson-Ziems, Kelly, H., Kemerait, B., Price, P., Robertson, A., and Tenuta, A. 2019. Meta-analysis of yield response of foliar fungicide-treated hybrid corn in the United States and Ontario, Canada. PLoS ONE 14(6): e0217510. https://doi.org/ 10.1371/journal.pone.0217510.

Fungicide For Field Crops Information Page Updated

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

 

The Fungicide for Field Crops Information webpage on the Badger CropDoc website has now been updated! The update includes links to the latest fungicide efficacy tables from the Crop Protection Network as well as several updated fact sheets from UW Integrated Pest and Crop Management Program. Many fungicide application decisions will be made over the next month or so. Even if you are already familiar with fungicides and how they work, a little refresher might be helpful as you make product and application decisions. If you aren’t familiar with fungicides or how to use on field crops, this page covers the basics with lots of useful information.

Updated! Fungicide Resistance Management in Corn, Soybean and Wheat in Wisconsin

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Richard Proost, Regional Agronomist, University of Wisconsin-Madison, Nutrient and Pest Management Program

Mimi Broeske, Senior Editor, University of Wisconsin-Madison, Nutrient and Pest Management Program

Updated for 2020! Fungicides are important tools for managing plant diseases in corn, soybean, and wheat. Unlike insecticides and herbicides that are used to kill insects and weeds, fungicides act as a barrier to protect healthy plant tissues from infection by fungi.  But resistance to fungicides can become a real problem if not managed well. This 8 page publications has background information about resistance, reviews the relevant FRAC codes, management guidelines and has two significantly updated, handy tables that list fungicides by FRAC code and registered crop.

You can download a PDF version of “A3878 – Fungicide Resistance Management in Corn, Soybean and Wheat in Wisconsin” by clicking here!

2019 Wisconsin Field Crops Pathology Fungicide Tests Summary Now Available

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Brian Mueller, Assistant Field Researcher, Department of Plant Pathology, University of Wisconsin-Madison

Each year the Wisconsin Field Crops Pathology Program conducts a wide array of fungicide tests on alfalfa, corn, soybeans, and wheat. These tests help inform researchers, practitioners, and farmers about the efficacy of certain fungicide products on specific diseases. The 2019 Wisconsin Field Crops Fungicide Test Summary is now available. These tests are by no means an exhaustive evaluation of all products available, but can be used to understand the general performance of a particular fungicide in a particular environment. Keep in mind that the best data to make an informed decision, come from multiple years and environments. To find fungicide performance data from Wisconsin in other years, visit the Wisconsin Fungicide Test Summaries page. You can also consult publication A3646 – Pest Management in Wisconsin Field Crops to find information on products labeled for specific crops and efficacy ratings for particular products. Additional efficacy ratings for some fungicide products for corn foliar fungicidessoybean foliar and seed-applied fungicides, and wheat foliar fungicides can be found on the Crop Protection Network website.

Mention of specific products in these publications are for your convenience and do not represent an endorsement or criticism. Remember that this is by no means a complete test of all products available.  You are responsible for using pesticides according to the manufacturers current label. Some products listed in the reports referenced above may not actually have an approved Wisconsin pesticide label. Be sure to check with your local extension office or agricultural chemical supplier to be sure the product you would like to use has an approved label.  Follow all label instructions when using any pesticide. Remember the label is the law!

Corn Stalk Rots and Ear Rots: A Double Whammy for Wisconsin Corn Farmers Again this Year

Damon L. Smith, Associate Professor and Extension Field Crops Pathology Specialist, University of Wisconsin-Madison

John Goeser, Adjunct Assistant Professor, Department of Dairy Science, University of Wisconsin-Madison and Animal Nutrition Director, Rock River Laboratory, Inc

Figure 1. Anthracnose stalk rot of corn.

The 2019 growing season is the third year in a row where we are going to end with many challenges for Wisconsin farmers. The excessively wet weather is challenging the last of corn silage harvest, and grain harvest has barely started in much of the state. Couple this with wet weather, delayed planting, and plant stress most of the season and there is a double whammy of stalk rot and ear rot issues to contend with this fall.

What is the Primary Stalk Rot Issue in Wisconsin?

Anthracnose stalk rot (Fig. 1) has been readily apparent for Wisconsin corn growers this season. Anthracnose stalk rot is typically worse in fields in a corn-on-corn rotation, and/or no-tilled, and planted to a susceptible hybrid. Reports and observations of lodging are starting to come in. In addition, to anthracnose stalk rot, we are also seeing Gibberella stalk rot picking up . This stalk rot seems to be showing up in late-planted corn-situations and especially wet fields. This isn’t surprising given the weather conditions and level of plant stresses from compaction, slow accumulation of growing degree day units, and foliar pathogens. Impending frost in much of the state this weekend will also end the growing season, meaning that plants already damaged by stalk rot will shut down. The clock starts ticking on what can be done and lodging becomes a considerable concern.

Frosted corn for silage will begin drying at a faster and constant rate, regardless of kernel or plant maturity. The primary aim for frosted corn meant for the silo becomes achieving an ideal moisture content for ensiling. With whole-plant corn silage, the ideal moisture range is 63 to 68% however with frost damaged or killed corn, achieving this dry matter for the entire crop may prove impossible.  Actively monitor moisture during harvest and segregate the crop if moisture dips below 55%, to avoid silage storage and stability issues later on. 

What should I do if I have a field with stalk rot?

In fields where stalk rot is an issue, HARVEST AS EARLY AS POSSIBLE to avoid yield losses from lodging. Silage corn fields should also be chopped as soon as possible, monitoring moisture and being sure to take extra care in packing the bunker. Delaying harvest for grain corn will increase the likelihood of lodging which will increase harvesting issues. Once conditions dry enough to allow combines to run, fields with higher levels of stalk rot and/or lodging should be prioritized for harvest.

What should I do about stalk rot for next season?

Management of of any of the stalk rots is multi-faceted. First, choose hybrids with the best resistance available. Hybrids that also have good resistance to foliar diseases will also offer an advantage when managing stalk rot, as foliar disease can stress corn plants and lead to increased risk of stalk rots like anthracnose stalk rot. Cultural practices such as crop rotation and tillage to manage surface residue can also help. Other practices that reduce plant stress such as balanced fertilization, proper planting population, providing suitable drainage, and using well adapted hybrids for your location will reduce the risk of anthracnose stalk rot.

Fungicides are not recommended for managing stalk rots, directly. However, we have observed better standability of corn in years with heavy foliar disease pressure, where fungicides have been applied.  This makes sense, because controlling heavy foliar disease allows the plant to continue to produce carbohydrates through photosynthesis. When heavy foliar disease pressure is left unchecked, corn plants can scavenge the stalks for resources predisposing corn plants to stalk rot diseases and a loss in stalk integrity.  

What corn ear rots and mycotoxins should I watch out for?

Figure 2. Diplodia ear rot (2 ears on the left) and Gibberella ear rot (2 ears on the right) of corn. Photo Credit: Craig Grau.

With all the wet weather, several ear rots have appeared in corn around much of the state. Ear rots caused by fungi in the groups Diplodia (Fig 2.), Fusarium, and Gibberella (Fig. 2) will be the most likely candidates to watch for as you begin harvest.  Fusarium and Giberrella are typically the most common fungi on corn ears in Wisconsin.  This group of fungi not only damage kernels on ears, but can also produce toxins called mycotoxins.  These toxins (fumonisins and vomitoxin) can threaten livestock that are fed contaminated grain. Thus grain buyers actively test for mycotoxins in corn grain to monitor mycotoxin levels to be sure they are not above certain action levels established by the U.S. Food and Drug Administration (FDA).

The FDA has established maximum allowable levels of fumonisins in corn and corn products for human consumption ranging from 2-4 parts per million (ppm).  For animal feed, maximum allowable fumonisin levels range from 5 ppm for horses to 100 ppm for poultry. Vomitoxin limits are 5 ppm for cattle and chickens and 1 ppm for human consumption.

Diplodia ear rot is not as common in Wisconsin. This disease is often more severe in years where dry weather precedes silking, followed by wet weather immediately after silking. Diplodia ear rot does not produce mycotoxins. While this disease does not result in mycotoxin accumulation, it can cause grain yield loss and quality issues.

For more information about ear rots and to download a helpful fact sheet produced by a consortium of U.S. corn pathologists, CLICK HERE.

 

How do I reduce mycotoxin risks at harvest?

Before harvest, farmers should check their fields to see if moldy corn is present. Sample at least 10-20 ears in five locations of your field. Pull the husks back on those ears and observe how much visible mold is present. If 30% or more of the ears show signs of Gibberella or Fusarium ear rot then testing of harvested grain is definitely advised. If several ears show 50-100% coverage of mold testing should also be done. Observe grain during harvest and occasionally inspect ears as you go. This will also help you determine if mycotoxin testing is needed.

If substantial portions of fields appear to be contaminated with mold, it does not mean that mycotoxins are present and vice versa. Remember, Diplodia ear rot does not produce mycotoxins. However, if you are unsure, then appropriate grain samples should be collected and tested by a reputable lab.  Work with your corn agronomist or local UW Extension agent to ensure proper samples are collected and to identify a reputable lab. If tests show high levels of mycotoxins in grain, that grain SHOULD NOT BE BLENDED with non-contaminated corn.

For more information on mycotoxins and to download a fact sheet, CLICK HERE.

Helpful information on grain sampling and testing for mycotoxins can be found by CLICKING HERE.

For a list of laboratories that can test corn grain for mycotoxins, consult Table 2-16 in UW Extension publication A3646 – Pest Management in Wisconsin Field Crops.

 

How should I store corn from fields with ear rots and mold?

If you observe mold in certain areas of the field during harvest, consider harvesting and storing that corn separately, as it can contaminate loads; the fungi causing the moldy appearance can grow on good corn during storage.  Harvest corn in a timely manner, as letting corn stand late into fall promotes Fusarium and Gibberella ear rots.  Avoid kernel damage during harvest, as cracks in kernels can promote fungal growth.  Also, dry corn properly as grain moisture plays a large role in whether corn ear rot fungi continue to grow and produce mycotoxins.  For short term storage over the winter, drying grain to 15% moisture and keeping grain cool (less than 55F) will slow fungal growth. For longer term storage and storage in warmer months, grain should be dried to 13% moisture or less. Fast, high-heat drying is preferred over low-heat drying. Some fungi can continue to grow during slow, low-heat drying. Also, keep storage facilities clean.  Finally, mycotoxins are extremely stable compounds: freezing, drying, heating, etc. do not degrade mycotoxins that have already accumulated in grain. While drying helps to stop fungal growth, any mycotoxins that have already accumulated prior to drying will remain in that grain. The addition of acids and reducing pH can reduce fungal growth but will not affect mycotoxins that have already accumulated in harvested grain.

For wet corn, earlage, snaplage or corn silage, promote optimal fermentation to preserve and stabilize the feed for dairy or beef cattle. As mentioned above, mycotoxin presence will not be alleviated, however stabilizing the crop can ensure the issue won’t worsen. Seal the crop as quickly as possible after harvest and use a research proven bacterial inoculant, acid or chemical preservative to stabilize the crop quickly after sealing. Monitor bag, bunker, and pile silo plastic for holes throughout the year and seal those you find quickly. Seal the ends and/or edges with added weight to minimize air infiltration into the silage or grain.

For more information on properly storing grain and to download a fact sheet on the subject, CLICK HERE.

 

What impact will ear and stalk rot have on my cows? 

Ear and stalk rots do not equate to animal health issues, however mycotoxins or wild yeast contamination which may be produced by or accompany ear and stalk rots can affect rumen health and digestion. As described above, manage the crop to the best of your ability from harvest through storage. Upon feed out, introduce heavily ear and stalk rot-laden feeds slowly into the ration. Test the suspicious crop for mold, yeast and vomitoxin content as you begin feeding it and closely monitor dry matter intakes and animal health. 

If animal health issues or contaminant levels for yeast and mycotoxin are recognized, consult with your nutrition and veterinary advisor as to the best plan of attack. Dilute the suspicious feed to a lesser amount if possible or consider research backed nutritional additives which can lessen yeast or mycotoxin impact on health. 

 

References

This article is an adaptation of the following resource:

Smith, D.L. 2016. Corn Stalk Rots and Ear Rots: A Double Whammy for Wisconsin Corn Farmers.