Midseason Corn Disease Update

Damon L. Smith, Extension Field Crops Pathologist, University of Wisconsin-Madison

Northern Corn Leaf Blight symptoms on a corn leaf.

The Wisconsin Field Crops Pathology crew has scouted corn from the southern portion of Wisconsin, to as far north as Spooner. Overall, disease levels are low. We have run into northern corn leaf blight (NCLB) in fields in the southern and central portions of the state. In most cases incidence was in the 10% or less range, with severity in the 5-10% range on leaves below the ear leaf. We have also had several samples arrive in the diagnostic clinic and confirmed with NCLB. For more information on managing NCLB or other corn diseases in Wisconsin, see my previous post here.

Goss’s wilt has been confirmed in Grant Co. via the diagnostic clinic. Other samples have also been submitted that were suspected for Goss’s wilt. However, these turned out to be NCLB. For assistance in differentiating these two diseases, click here to view a PDF quick diagnostic guide.

Common rust remains super common. I have received several questions about spraying fungicide to control common rust. For field corn hybrids, no fungicide will be needed. In any specialty corn situations (inbreds for seed production, sweet corn, etc.) spraying for  common rust might need to be considered. Most field corn hybrids have excellent resistance to common rust and will yield well, despite finding some pustules on a corn plant.

Southern rust has not yet been found in Wisconsin. However, it has been reported very close to Wisconsin (http://ext.ipipe.org). You should continue to be diligent in scouting for this rust disease. Yield reductions can be substantial if the fungus moves in over the next several weeks. Fortunately, our weather systems have been moving into Wisconsin from Canada and Minnesota. This has likely slowed progress of the southern rust fungus from moving into Wisconsin. Click here to view a great new resource on southern rust by the Crop Protection Network.

 

Corn and Southern Rust

Damon L. Smith, Extension Field Crops Pathologist, University of Wisconsin-Madison

Figure 1. Corn Southern Rust Observations as of July 21, 2017 (Map from ext.ipipe.org)

If you are like me, you have been paying attention to reports from the southern U.S. indicating that southern rust of corn is making its way further north again this year. You can follow current southern rust updates on the iPiPE site. The latest reports place southern rust in central portions of Iowa and Illinois (Fig. 1), which means farmers in Wisconsin need to start paying attention to this issue. Scouting over the next several weeks is going to be critical for making in-season management decisions for this disease. Yield reductions in Wisconsin will be greatest if southern rust moves in prior to the “milk” (R3) growth stage in corn. Lets take a closer look at southern rust and its less damaging relative, common rust.

Figure 2. Southern rust pustules on a corn leaf. Photo credit: Department of Plant Pathology., North Carolina State University, Bugwood.org

Southern rust is caused by the fungus Puccinia polysora. Symptoms of southern rust are different from common rust in that they are typically smaller in size and are often a brighter orange color (Fig. 2). Pustules of southern rust also typically only develop on the upper surface and will be be more densely clustered. Favorable conditions for southern rust development include high humidity and temperatures around 80F. However, very little free moisture is need for infection to occur. Southern rust is typically a rare occurrence in Wisconsin. When it does occur, it is usually in the southern and south-western portions of the state, with epidemics initiating late in the season. With that said, southern rust did make it to southern Wisconsin in 2016. However, the arrival was well past R3 and yield reductions caused by southern rust were insignificant in Wisconsin. Spores of this fungus have to be blown up from tropical regions or from symptomatic fields in the southern U.S. The fungus can not overwinter in Wisconsin. While southern rust epidemics can be rare events in Wisconsin, the disease can be serious when it occurs. Therefore close monitoring of forecasts and scouting are needed to make timely in-season management decisions.

Management of Southern Rust

Traditionally resistance was used to manage southern rust. However, in 2008 a resistance-breaking race of the southern rust fungus was confirmed in Georgia. Thus most modern hybrids are considered susceptible to southern rust. Rotation and residue management have no effect on the occurrence of southern rust. The southern rust fungus has to have living corn tissue in order to survive and can not overwinter in Wisconsin. Fungicides are typically used to control southern rust in parts of the U.S. where this is a consistent problem. Efficacy ratings are available for fungicides against southern rust on the Corn Fungicide Efficacy Table. As I said previously, should southern rust make its way to Wisconsin prior to the “milk” (R3) growth stage in corn, it could cause yield reductions. Growers and consultants should scout carefully through the R3 growth stage and be sure to properly identify the type of rust observed. If you need assistance in identifying rust on corn, leaf samples of corn plants can be sent in a sealed plastic bag with NO added moisture to the University of Wisconsin Plant Disease Diagnostic Clinic (PDDC). Information about the clinic and how to send samples can be found by CLICKING HERE.

Figure 3. Brick-red Pustules of the common rust fungus on a corn leaf.

Common rust is caused by the fungus Puccinia sorghi and is extremely common in Wisconsin, but often results in little yield loss. Most field corn hybrids planted in Wisconsin are very resistant to the disease. Symptoms can include chlorotic flecks that eventually rise and break through the epidermis to produce pustules of brick-red spores (Fig. 3). Typically these pustules are sparsely clustered on the leaf. They can also appear on other parts of the plant including the husks and stalks. Management for common rust primarily focuses on using resistant hybrids. Remember resistance is not immunity, so some pustule development can be observed even on the most resistant hybrids. Some inbred corn lines and specialty corn can be highly susceptible to common rust. Under these circumstances a fungicide may be necessary to control common rust. Most of the hybrids I have scouted this season have some pustules, however incidence and severity is relatively low. Therefore, a fungicide application to control common rust isn’t needed for most of these hybrids in Wisconsin. Residue management or rotation is typically not needed for this disease as inoculum (spores) have to be blown up on weather systems from the southern U.S.

Other Useful Resources about Rusts on Corn

Purdue Extension Fact Sheet – Common and Southern Rusts of Corn

WisCONTEXT Article on Southern Rust

Ohio State University Article on How to Differentiate Common Rust from Southern Rust

Video by Dr. Tamra Jackson-Ziems of the University of Nebraska – Identifying Rust Diseases of Corn

References

Munkvold, G.P. and White, D.G., editors. 2016. Compendium of Corn Diseases, Fourth Edition. APS Press.

Wise, K., Mueller, D., Sisson, A., Smith, D., Bradley, and Robertson, A., editors. 2016. A Farmer’s Guide to Corn Diseases. APS Press.

In-Season Corn Disease Management Decisions – 2017

Damon L. Smith, Extension Field Crops Pathologist, University of Wisconsin-Madison

Tasseling has begun on field corn in the southern region of Wisconsin. With this, comes many questions about applying fungicide to control disease and preserve yield. What diseases are out there? What disease(s) should I focus on in-season? When should I spray? What should I spray? On top of these questions, we are also confronted with corn prices, which are less than ideal and create tight profit margins. So what should we consider for in-season disease management? Lets consider the diseases first, then the management decisions.

Figure 1. NCLB Lesions on a corn leaf

Northern Corn Leaf Blight (NCLB): The most diagnostic symptom of NCLB is the long, slender, cigar-shaped, gray-green to tan lesions that develop on leaves (Fig. 1).  Disease often begins on the lower leaves and works it way to the top leaves.  This disease is favored by cool, wet, rainy weather, which has seemed to dominate lately. Higher levels of disease might be expected in fields with a previous history of NCLB and/or fields that have been in continuous and no-till corn production. The pathogen over-winters in corn residue, therefore, the more residue on the soil surface the higher the risk for NCLB.  Management should focus on using resistant hybrids and residue management.  In-season management is available in the form of several fungicides that are labeled for NCLB. However, these fungicides should be applied at the early onset of the disease and only if the epidemic is expected to get worse.

While I hate talking about threshold levels for managing disease, it can be helpful in your decision making process to know what might be severe. While scouting look in the lower portion of the canopy. If some symptoms are present in the lower canopy, make a visual estimation of how frequent (percentage of plants with lesions) NCLB is in a particular area and how severe (how much leaf area is covered by NCLB lesions.  The lower leaves aren’t responsible for much yield accumulation in corn, but spores produced in NCLB lesions on these leaves can be splashed up to the ear leaves where disease can be very impactful. So by scouting the lower canopy and getting an idea of how much disease is present, you can “predict” what might happen later on the ear-leaves to make an informed spray decision.

Figure 2: A computer simulation of 5% NCLB severity on a corn leaf.

The other consideration you should make while scouting is the resistance rating that the hybrid has for NCLB. If it is rated as resistant, then NCLB severity might not be predicted to get very severe, while in  a susceptible hybrid, NCLB might be present on 50% or more of plants at high severity levels. Note however, that even if a hybrid is rated as resistant, it can still get some disease. Resistance isn’t immunity! If NCLB is present on on at least half the plants and severity is at least 5-10% and weather is forecast to be rainy and cool, a fungicide application will likely be needed to manage the disease. So what does 5% leaf severity look like? Figure 2 is a computer generated image that shows 5% of the corn leaf with NCLB lesions. You can use this image to train your brain to visually estimate how severe the disease might be on a particular leaf. As for fungicide choice and timing, I consider that further below. Incidentally, we did confirm our first NCLB lesions of the year in the diagnostic lab last week. So now is a good time to get out and scout!

Figure 3. Gray Leaf Spot lesions on a corn leaf.

Gray Leaf Spot (GLS): Gray leaf spot typically starts as small blocky or jagged, light tan spots. These can expand to become long, narrow, rectangular lesions (Fig. 3) that may have yellow or orange halos around them. Gray leaf spot is typically worse when temperatures are warm and humidity is frequently above 90%. Thus, in Wisconsin, this disease is generally more frequent in the southern and southeastern portion of the state. Conditions that favor GLS often do not favor NCLB. The GLS pathogen and NCLB pathogen have different temperature requirements. Yield loss from GLS will be the greatest if lesions develop on the ear-leaves right before and right after tasseling. Like NCLB, hybrids rated as susceptible will generally suffer greater yield reductions due to gray leaf spot. Management of GLS should focus on choosing hybrids with excellent resistance and managing corn residue. Corn residue allows the pathogen to overwinter.

Like NCLB, fungicides can also be used to manage gray leaf spot. However, these should be applied as preventative applications. Thus using the same rule of thumb to make a spray decision for GLS, as for NCLB, can help you make the decision to spray fungicide. As for fungicide choice and timing, I will also consider that further below.

Figure 4. Brick-red Pustules of the common rust fungus on a corn leaf.

Common Rust: Symptoms of common rust can include chlorotic flecks that eventually rise and break through the epidermis to produce pustules of brick-red spores (Fig. 4). Typically these pustules are sparsely clustered on the leaf. They can also appear on other parts of the plant including the husks and stalks. Conditions that favor the development of common rust are periods of high humidity and nighttime temperatures that remain around 70F with moderate daytime temperatures. This fungus needs very little free moisture for infection to occur. Very hot and dry weather can slow or stop disease development.

Common rust is a extremely common (pun intended) and often results in little yield loss in Wisconsin. Most field corn hybrids planted in Wisconsin are very resistant to the disease. Management for common rust primarily focuses on using these resistant hybrids. Remember resistance is not immunity, so some pustule development can be observed even on the most resistant hybrids. Some inbred corn lines and specialty corn can be highly susceptible to common rust. Under these circumstances a fungicide may be necessary to control common rust. Most of the hybrids I have scouted this season have some pustules, however incidence and severity is relatively low. Therefore, a fungicide application to control common rust isn’t needed for most of these hybrids in Wisconsin. Residue management or rotation is typically not needed for this disease as inoculum (spores) have to be blown up on weather systems from the southern U.S.

Figure 5. Eyespot symptoms on a corn leaf.

Eyespot: Eyespot typically first develops as very small pen-tipped sized lesions that appear water-soaked.  As the lesions mature they become larger (¼ inch in diameter) become tan in the center and have a yellow halo (Fig. 5).  Lesions can be numerous and spread from the lower leaves to upper leaves. In severe cases, lesions may grow together and can cause defoliation and/or yield reduction. Eyespot is also favored by cool, wet, and frequently rainy conditions.  No-till and continuous corn production systems can also increase the risk for eyespot, as the pathogen is borne on corn residue on the soil surface.  Management should focus on the use of resistant hybrids and residue management.  In-season management is available in the form of fungicides. Severity has to reach high levels (>50%) before this disease begins to impact yield. I often have eyespot present in my corn trials each year as we plant into continuous corn and use no-till. However, we typically do not see yield reductions from this disease even in non-sprayed plots. When scouting, note the disease and keep track of the severity. Again, fungicides should be applied early in the epidemic and may not be cost effective for this disease alone.

What Disease(s) Should I Focus on In-Season? Based on the information above, the greatest emphasis for Wisconsin should be placed on controlling NCLB and GLS. Most hybrids planted in Wisconsin will be resistant to eyespot and common rust.

What Should I Spray, and When Should I Spray for Corn Foliar Diseases In Wisconsin? Fungicide should be used to preserve yield and reduce disease level. There is no silver bullet fungicide out there for all corn diseases. However, there are many products which work well on a range of diseases. The 2017 Corn Fungicide Efficacy table lists products that have been rigorously evaluated in university research trials across the country. You can see there are several products listed that perform well on both NCLB and GLS. So obviously, if a disease is present and you are trying to control the disease, you might expect more return on your investment, compared to simply spraying fungicide and hoping that there might be a yield increase.

Paul et al. (2011) conducted research to investigate the return on investment (ROI) of using fungicide at low and elevated levels of disease. Data from 14 states between 2002 and 2009 were used in the analysis. They looked at 4 formulations of fungicide products across all of these trials. I won’t go into detail about all products, but will focus on one here, pyraclostrobin. This is the active ingredient in Headline® Fungicide. In all, 172 trials were evaluated in the analysis and Paul et al. found that on average there was a 4.08 bu/acre increase in corn grain yield when pyraclostrobin was used. So there does appear to be some increase in yield with the use of fungicide over not treating across a range of environments. But in our current market, will this average gain cover the fungicide application? Today’s corn future price for September has a bushel of corn at $3.76.

Let’s Take a Closer Look at Corn Fungicide Return on Investment (ROI): While most of the early work on fungicide use in corn has focused on Headline® Fungicide, much of the industry has transitioned to using multi-mode-of-action products. These would be products mostly containing strobilurin (QoI) and triazole (DMI) fungicides in the same jug. Products such as Headline AMP® or Quilt Xcel® would fall into this category. These combination products have also been fairly consistent in response in my fungicide trials. You can find summaries of these trial results here. If we consider using Quit Xcel® at 10.5 fl oz or Headline AMP® at 10.0 fl oz, the list pricing of the product alone ranges from $15/acre (Quit Xcel®) to $22/acre (Headline AMP®). If the fungicide will be flown on with an aircraft, that cost will likely add nearly $15/acre to the application. Thus, fungicide plus application would range from $30/acre to $37/acre. If we can sell corn at $3.76 per bushel then we would need to preserve 8 bu/acre to nearly 10 bu/a in yield over not treating to break even! In a recent analysis of corn yield data where DMI+QOI products were applied at the tasseling period across the entire corn belt, the average yield preservation over not treating was 7.20 bu/a. This average projection is short of the 8 bu/a minimum we would need in the scenario above. However, the probability of preserving yield in the 8-10 bu/a range in this range is estimated to be 25% – 50%. This means that if we apply Quit Xcel® at 10.5 fl oz or Headline AMP® at 10.0 fl oz aerially, we will only break even 25% – 50% of the time with corn priced at $3.76 per bushel. If we can sell our corn for a better price or make the applications cheaper, then the odds will improve, but probably not climb above 70% even under the best case scenario. We do know that in Wisconsin, the odds of breaking even do improve if NCLB or GLS are active and increasing during the tasseling period. Get out there and scout!

So What About Fungicide Application Timing? We can investigate this questionover the U.S. corn belt using the same dataset. Applications focused on an early (V6) timing, a VT-R2 timing, or a combination of V6 plus a VT-R2 application. Let’s again focus on the QoI+DMI products. Based on observations across the corn belt the V6 timing averaged almost 3 bu/a of preserved yield over not treating. The VT application resulted in nearly 8 bu/a in preserved yield, while the two-pass program only offered a little over 8 bu/a. Clearly the higher average yield preservation occurs using a single application of fungicide at the VT-R2 timing. Wisconsin data has been consistent with this observation. Thus it is recommended that a single application of fungicide be used around the VT-R2 growth stages, when NCLB or GLS are active and increasing on or near the ear leaves.

What About Silage Corn and Ear Rot? When it comes to ear rot control and reducing the accumulation of mycotoxins in grain or silage corn, fungicide application should be made when white silks are out. Spores of fungicide that generally cause mycotoxin issues in the grain portion of corn will infect the plant through silks. Thus, apply fungicides during silking or with 5 days after silking starts, can be beneficial. Note though that if the goal is to target mycotoxin production and reduce deoxynivalenol (DON) accumulation in the grain portion of the plant, DMI only products should be used. Like winter wheat, the application of QoI containing fungicides can increase DON accumulation in the grain portion of corn plants. Some work has been done using Proline® to control Fusarium ear rot. This DMI only product has shown promise in reducing ear rot and DON accumulation in the grain portion of the corn plant and has a label for suppressing Fusarium ear rot in Wisconsin.

Finally, be aware that in some cases, application of fungicide in combination with nonionic surfactant (NIS) at growth stages between V8 and VT in hybrid field corn can result in a phenomenon known as arrested ear development. The damage is thought to be caused by the combination of NIS and fungicide and not by the fungicide alone. To learn more about this issue, you can CLICK HERE and download a fact sheet from Purdue Extension that covers the topic nicely. Considering that the best response out of a fungicide application seems to be between VT-R2, and the issues with fungicide plus NIS application between V8 and VT, I would suggest holding off for any fungicide applications until at least VT.

Summary

As we approach the critical time to make decisions about in-season disease management on corn, it is important to consider all factors at play while trying to determine if a fungicide is right for your corn operation in 2017. Here is what you should consider:

1) Corn hybrid disease resistance score for NCLB and GLS – Resistant hybrids may not have high levels of disease which impact yield.

2) Get out of the truck and SCOUT, SCOUT, SCOUT – Consider how much disease and the level of severity of disease present in the lower canopy prior to tassel.

3) Consider weather conditions prior to, and during, the VT-R2 growth stages – if weather is conducive for NCLB or GLS, disease may continue to increase in corn and a fungicide application might be necessary. If it turns out to be hot and dry, disease development will stop and a fungicide application would not be needed.

4) Consider your costs to apply a fungicide and the price you can sell your corn grain – Will you preserve enough yield out of the fungicide application to cover its cost?

5) Hold off with making your fungicide application in Wisconsin until corn has reached the VT-R2 growth stages – The best foliar disease control and highest likelihood of a positive ROI will occur when fungicide is applied during this timing when high levels of disease are likely.

6) Be aware that every time you use a fungicide you are likely selecting for corn pathogen populations that will become resistant to a future fungicide application – Make sure your fungicide application is worth this long-term risk. See fact sheet A3878 below for more information.

Other Resources

Video: Disease Management in Low-Margin Years (fast forward to 10:00 for corn information)

Fact Sheet: A4137 – Grain Management Considerations in Low-Margin Years

Fact Sheet: A3878 – Fungicide Resistance Management in Corn, Soybeans, and Wheat in Wisconsin

References

Munkvold, G.P. and White, D.G., editors. 2016. Compendium of Corn Diseases, Fourth Edition. APS Press.

Paul, P. A., Madden, L. V., Bradley, C. A., Robertson, A. E., Munkvold, G. P., Shaner, G., Wise, K. A., Malvick, D. K., Allen, T. W., Grybauskas, A., Vincelli, P., and Esker, P. 2011. Meta-analysis of yield response of hybrid field corn to foliar fungicides in the U.S. Corn Belt. Phytopathology 101:1122-1132.

Wise, K., Mueller, D., Sisson, A., Smith, D., Bradley, and Robertson, A., editors. 2016. A Farmer’s Guide to Corn Diseases. APS Press.

Wisconsin Corn Disease Update – July 27, 2016

Damon Smith, Extension Field Crops Pathologist, University of Wisconsin-Madison

Northern Corn Leaf Blight

Over the last week concerns have been increasing over corn diseases as we are at the critical time to make fungicide application decisions. See my previous post about the early onset of northern corn leaf blight (NCLB) in Wisconsin in 2016 by CLICKING HERE. While NCLB can be observed in many corn fields in the state, it can be difficult to find. The hot weather this year has managed to keep that disease in check. While now is a good time to scout and make spray decisions, remember that it would take 50% or more of plants in the field with 10% or more of the ear leaves covered with lesions of NCLB prior to the milk growth stage before significant yield loss will occur.

Goss’s Wilt

Just this week, the University of Wisconsin-Madison Plant Disease Diagnostic Clinic (PDDC) positively confirmed the first Goss’s wilt sample of 2016. This sample came from Grant Co. Other samples have arrived, but no definitive confirmation has been made in other counties in the state. For information on Goss’s Wilt you can visit my previous posting from 2015 by CLICKING HERE.

Rusts

Figure 1. 2016 Southern Rust Advancement in The U.S. as of July 27. Red highlights indicate counties where southern rust has been confirmed.

Figure 1. 2016 Southern Rust Advancement in The U.S. as of July 27. Red highlights indicate counties where southern rust has been confirmed.

Southern rust continues to be a disease to scout for in Wisconsin. No positive confirmations have been made in Iowa, Illinois, or Wisconsin. However, the disease has been confirmed in parts of Nebraska (Fig. 1). We have scouted several fields of dent corn and also sweet corn. Only pustules of common rust have been observed in these fields. Conditions have been suitable for this disease over the last several weeks. Remember that rust pathogens have to be blown in from the south. The inoculum of the fungi that cause these diseases do not overwinter in Wisconsin. To learn more about the two types of rust that can affect corn in Wisconsin and how to manage them, CLICK HERE to visit my post from last week.

Remember to get out there and SCOUT, SCOUT, SCOUT!

Corn Rusts in Wisconsin

Damon L. Smith, Extension Field Crops Pathologist, University of Wisconsin-Madison

Figure 1. Brick-red Pustules of the common rust fungus on a corn leaf.

Figure 1. Brick-red Pustules of the common rust fungus on a corn leaf.

I have been receiving lots of questions over the last couple of weeks about rusts in corn. Folks are identifying pustules of common rust on field and silage corn in Wisconsin. Common rust is caused by the fungus Puccinia sorghi. Symptoms can include chlorotic flecks that eventually rise and break through the epidermis to produce pustules of brick-red spores (Fig. 1). Typically these pustules are sparsely clustered on the leaf. They can also appear on other parts of the plant including the husks and stalks. Conditions that favor the development of common rust are periods of high humidity and nighttime temperatures that remain around 70F with moderate daytime temperatures. This fungus needs very little free moisture for infection to occur. Thus, the weather conditions in Wisconsin over the last month have been somewhat conducive for this disease. However, very hot and dry weather can slow or stop disease development.

Management of Common Rust

Management for common rust primarily focuses on resistant hybrids. Most modern commercial hybrids have excellent resistance to common rust. Remember resistance is not immunity, so some pustule development can be observed even on the most resistant hybrids. Some inbred corn lines and specialty corn can be highly susceptible to common rust. Under these circumstances a fungicide may be necessary to control common rust. Fungicides with efficacy toward common rust can be found on the Corn Fungicide Efficacy Table. Most of the hybrids I have scouted this season have some pustules, however incidence and severity is relatively low. Therefore, a fungicide application to control common rust isn’t needed for most of these hybrids in Wisconsin. Residue management or rotation is typically not needed for this disease as inoculum (spores) have to be blown up on weather systems from the southern U.S.

Figure 2. Southern rust pustules on a corn leaf. Photo credit: Department of Plant Pathology., North Carolina State University, Bugwood.org

Figure 2. Southern rust pustules on a corn leaf. Photo credit: Department of Plant Pathology., North Carolina State University, Bugwood.org

A related rust that we need to pay close attention to this season is southern rust. Southern rust is caused by the fungus Puccinia polysora. Symptoms of southern rust are different from common rust in that they are typically smaller in size and are often a brighter orange color (Fig. 2). Pustules of southern rust also typically only develop on the upper surface and will be be more densely clustered. Favorable conditions for southern rust development are similar to those for common rust. high humidity and temperatures around 80F encourage disease development. However, very little free moisture is need for infection to occur. Southern rust is typically a rare occurrence in Wisconsin. When it does occur, it is usually in the southern and southern western portions of the state, with epidemics initiating late in the season. Spores of this fungus have to be blown up from tropical regions or from symptomatic fields in the southern U.S. The fungus can not overwinter in Wisconsin. While southern rust epidemics can be rare events in Wisconsin, the disease can be serious when it occurs. Therefore close monitoring of forecasts and scouting are needed to make timely in-seaosn management decision.

Figure 3. Corn Southern Rust Observations as of July 22, 2016

Figure 3. Corn Southern Rust Observations as of July 22, 2016

Currently the Corn Southern Rust iPIPE map is showing numerous confirmed cases of southern rust in the southern, southeastern U.S. and Kansas and Kentucky. No confirmed cases have been identified in Illinois, Iowa or Wisconsin. However, close attention should be paid to this disease in 2016 as the confirmed cases this year have been earlier than in the past. This could mean that conditions are ripe for movement of southern rust inoculum into Wisconsin.

Management of Southern Rust

Traditionally resistance was used to manage southern rust. However, in 2008 a resistance-breaking race of the southern rust fungus was confirmed in Georgia. Thus most modern hybrids are considered susceptible to southern rust. Rotation and residue management have no effect on the occurrence of southern rust. The southern rust fungus has to have living corn tissue in order to survive and can not overwinter in Wisconsin. Fungicides are typically used to control southern rust in parts of the U.S. where this is a consistent problem. Efficacy ratings are also available for fungicides against southern rust on the Corn Fungicide Efficacy Table. Should southern rust make its way to Wisconsin prior to the “milk” (R3) growth stage in corn, it could cause yield reductions. Growers and consultants should scout carefully through the R3 growth stage and be sure to properly identify the type of rust observed. If you need assistance in identifying rust on corn, leaf samples of corn plants can be sent in a sealed plastic bag with NO added moisture to the University of Wisconsin Plant Disease Diagnostic Clinic (PDDC). Information about the clinic and how to send samples can be found by CLICKING HERE.

Other Useful Resources about Rusts on Corn

Purdue Extension Fact Sheet – Common and Southern Rusts of Corn

2014 Crop Alert – University of Nebraska

Video by Dr. Tamra Jackson-Ziems of the University of Nebraska – Identifying Rust Diseases of Corn

Wisconsin Corn and Soybean Disease Update – August 21, 2014

Damon L. Smith – Extension Field Crops Pathologist, University of Wisconsin

Figure 1. IPM Pipe Southern Corn Rust Advisory for August 21, 2014.

Figure 1. IPM Pipe Southern Corn Rust Advisory for August 21, 2014.

I have spent the last several days rating and scouting corn and soybeans in the southern tier of Wisconsin. There are a few active diseases out there to keep track of.

Field Corn

In field corn we have found a few fields with low levels of northern corn leaf blight (NCLB). Levels of NCLB seem to be a bit higher in southwestern Wisconsin. Severity on lower leaves in field corn was in the 10 – 15% range, with no damage apparent on ear leaves. Around the Arlington, WI area, NCLB is very limited with only a few lesions evident every 100 ft. or so.

Eyespot is becoming more evident in field corn.  In fields with corn debris from a previous crop, the severity levels are in the 25-30% range on lower leaves and 10-15% on ear leaves.

Low levels of common rust (less than 5%) can also be found on some field corn hybrids in Southern Wisconsin.

Southern rust has been reported as far north as east-central Nebraska. The southern rust epidemic is being monitored closely in the Midwest. No southern rust has been found or reported in Wisconsin (Fig. 1).

For more information about corn diseases in Wisconsin, see my previous article by clicking here.

Sweet Corn

Several fields with severe epidemics of NCLB on sweet corn have been reported.  These were late-planted fields. Sweet corn is generally more susceptible to NCLB than field corn. Common rust and eyespot can also be found at varying levels on sweet corn in the central and southern portion of Wisconsin.

In research plots at the Arlington Agricultural Research Station, sweet corn planted on June 25th is beginning to tassel. Levels of NCLB are currently low in this field, but common rust is increasing rapidly. Some leaves have 20-25% severity. Any late-planted and/or susceptible varieties of sweet corn should be monitored closely for foliar disease and any decision to spray fungicide should be made by the tasseling/R1 growth stage.

Soybean

The most widespread disease on soybean that we have observed is Septoria brown spot.  Overall levels of Septoria brown spot are low, and can mostly only be found on lower leaves, which is typical for this disease. In many cases a fungicide specifically for this disease is not warranted in Wisconsin, unless there are factors that might lead to increased levels of severity, including continuous soybean rotation, very susceptible varieties, or extremely conducive weather. Most soybean fields are past the R3 growth stage , when a fungicide application might be beneficial for control of foliar diseases. However, this disease should be monitored in fields that were planted late.

Downy mildew has also been observed on soybean in various areas from central to southern Wisconsin. Fungicide application for control of this disease has not proven beneficial in university research trials. Therefore, fungicide application is not recommended for this disease under most circumstances. In soybean fields that are irrigated, the frequency between irrigation events should be lengthened in order to reduce the levels of downy mildew. Warmer, dry weather will also further reduce the level of downy mildew.

Figure 2. Damage from white mold in a soybean field under irrigation.

Figure 2. Damage from white mold in a soybean field under irrigation.

Active white mold has been found in fields in the central and southern portions of Wisconsin. Severity levels vary greatly depending on the fields and level of previous infestation by the white mold fungus. We have observed levels ranging from a few plants in spotty areas of a field to widespread damage with plant mortality across the entire field. The latter case was in a field with a history of white mold and frequent overhead irrigation (Figure 2). Application of fungicide for control of white mold is not recommended after the R3 growth stage. However, fields should be scouted and damage noted to facilitate future planting and management decision in that field. Fields with white mold should be harvested after fields that do not have white mold. The black survival structures (sclerotia; resemble rat droppings) of the white mold fungus can be easily spread on combines from one field to the next. If harvesting white mold infested fields last is not feasible, care should be taken to thoroughly clean combine mechanisms where soybean trash and debris can be trapped, between fields. For more information about white mold and management of the disease, click hereTo watch a short video about white mold you can click here.

Other diseases such as brown stem rot, sudden death syndrome, and stem canker have been found at extremely low levels in soybean fields in Wisconsin this season. This situation should be monitored closely as soybeans approach the R6 and R7 growth stages. These two diseases may become more apparent at that time. Again, good record keeping of where these diseases are found can facilitate future management decisions for those fields.