Wisconsin Field Crop Disease Update – August 10, 2024

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Tar Spot of Corn

Figure 1. Statewide tar spot risk as calculated by the Field Prophet tool for August 10, 2024.

You can find the most recent updates on tar spot confirmations across the U.S. here: https://corn.ipmpipe.org/tarspot/. The Field Prophet tool is also showing mostly moderate risk across the southern two-thirds of Wisconsin, with just the northern tier with high risk for tar spot development at this point in the season (Fig. 1). This means that the weather is less conducive for tar spot development and spread. We are also quickly approaching the end of the in-season management window for applying fungicides in corn for tar spot control. For the major foliar diseases of corn, including tar spot, the optimal window to apply fungicides and maximize return on investment, is between the VT/R1 and R3 growth stages. If your crop has reached the milk growth stage and you are still not seeing any disease and the Tarspotter risk isn’t high, you can hold off on the fungicide application. The likelihood of a yield-limiting tar spot epidemic is low in this situation. You can learn more about fungicide application for tar spot control here.

White Mold of Soybeans

Figure 2. Statewide white mold risk as calculated by the Field Prophet tool for August 10, 2024.

The risk for white mold according to Field Prophet is a bit higher compared to tar spot. Risk is generally high across the state with several pockets of low or medium risk. This means that weather has been conducive for the development of the mushroom-like structure (apothecia) of the white mold fungus that gives rise to spores that infect soybean. These risk estimates appear to be accurate as we continue to find apothecia in fields with a history of white mold (Figure 3). With that said, the soybean crop is quickly approaching the R4 growth stage or beyond, where the opportunity of infection by the white mold fungus does not exist. Thus, there is not a need to spray for white mold beyond the R4 growth stage. Similar to tar spot, the optimal timing of fungicide application ranges from the R1 growth stage to the R3 growth stage in soybeans. If you no longer see flowers on soybeans, then the risk for infection by the white mold fungus is low, despite conducive weather for the fungus.

Use Predictive Tools like a “Crystal Ball”

We continue to get questions about how the apps (Tarspotter, Sporecaster, and Field Prophet) should be used to make decisions about in-season disease management. We have designed these tools to be predictive. This means that the risk indexes you see are telling you that in the next week or two, you might see these diseases pop up. We developed these tools to act like a “crystal ball” so that you can look ahead and apply fungicides in a preventative manner. We know that fungicides work best when applied preventatively. In addition for diseases like tar spot, the fungus that causes this disease has a very long incubation period (time from infection to when you actually see tar spots). This time period can be as long as 30 days. So a high risk today, might indicate seeing tar spot show up even a month from now. Be sure to use these tools to look into the future and to prepare yourself, rather than being reactionary.

Figure 3. Apothecia of the white mold fungus at the base of a soybean stem.

Other Diseases to Watch

Figure 4: Northern corn leaf blight (NCLB) lesion on a corn leaf.

We are starting to find more and more northern corn leaf blight (NCLB; Figure 4) in some fields in Wisconsin. This makes sense as the weather recently has been cooler and wetter. Luckily most of the fungicides used for tar spot also have good efficacy against NCLB. Thus if you sprayed for tar spot, you have probably controlled NCLB too. For those with silage corn, especially brown mid-rib (BMR) hybrids, continue to scout your fields for NCLB. Some BMR hybrids are very susceptible to this disease. If NCLB begins to move quickly and you are approaching your harvest window, you might consider chopping a bit earlier in order to reduce damage by NCLB.

We also continue to watch the frogeye leaf spot situation in soybeans. Our beta-testing models for frogeye leaf spot have shown relatively low risk for this disease in Wisconsin this season. We also have not found any frogeye leaf spot to date. However, the risk is creeping up in southern Wisconsin. The window to treat for this disease ends around R5. Thus, I believe most of the soybeans in Wisconsin will escape frogeye leaf spot without the need to apply a fungicide this season. However, keep an eye on your fields and continue to scout to stay informed of the situation.

Mid-Season Corn and Soybean Disease Update and New Corn Fungicide ROI Calculator

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Tar Spot and Corn

Figure 1. Statewide tar spot risk as calculated by the Field Prophet tool for July 22, 2024.

You can find the most recent updates on tar spot confirmations across the U.S. here: https://corn.ipmpipe.org/tarspot/. The Field Prophet tool is also showing mostly moderate to high risk across the state of Wisconsin (Fig. 1). This means that if your crop is between VT/R1 and R3 you should be actively scouting for tar spot and making the decision to apply a fungicide at this time. Our research has shown that one well-timed application of fungicide somewhere between VT/R1 – R3 will control tar spot enough for a yield response even in a heavy-pressure year. You can learn more about managing tar spot BY CLICKING HERE. If you think you found tar spot I would appreciate if you would let us know. We can enter the county level data into the Corn IPMPipe Map and contribute to the cause.

Gray Leaf Spot and Corn

We are also watching the gray leaf spot (GLS) situation closely. The southern and southwestern portions of the state have had enough heat and moisture that risk is likely high for this disease in those locations. For the rest of the state, risk isn’t as high, but likely moderate risk exists. Fortunately, the same fungicides that work well in controlling tar spot, also work well against GLS. Thus, another reason that a fungicide application may need to be considered at this point in the season.

Corn Fungicide ROI Calculator

With the tight margins in the corn market, and a high risk for disease due to wet weather, I have been getting a lot of questions about fungicide return on investment (ROI) this season. Fortunately, the scientists involved in the Crop Protection Network have been working on amassing fungicide performance and ROI data over the last few seasons and have launched a new interactive Fungicide ROI tool. The tool is research-based using data from across the entire U.S. corn production belt, including Wisconsin. During the studies included in this dataset, the diseases of interest were tar spot and also southern rust. Both are again diseases of interest this season. The tool can be used to run various scenarios that fit your farm and situation in the 2024 growing season. You can change the expected end-of-season disease severity levels, and the pricing of products included in the tool. Not all products labeled for corn can be found there, but most of the popular ones are included. You can also adjust the sale price for your crop, and expected farm yield, so that you can get real estimates of ROI and probability of breaking even for your situation. An example scenario can be found in figure 2 where I adjusted the tool to 180 bu/a yield and a corn sale price of $4 per bushel with expected high levels of tar spot or southern rust. You can see that several products result in a positive net benefit per acre using default product pricing. However, the tight margins this year, do result in lower breakeven probabilities. I would suggest running the tool for your situation. Be honest with yourself and put real numbers in the tool. This tool may be helpful for you if you are on the fence about spraying a fungicide this year. If you have a known resistant hybrid, your crop is already through to R3, and no disease has shown up yet, you might be able to help your financial situation by not spraying this season.

White Mold and Soybeans

Figure 3. Statewide white mold risk as calculated by the Field Prophet tool for July 22, 2024.

The risk for white mold according to Field Prophet is a bit spottier compared to tar spot. Mostly the northern and central portions of the state are at high risk with some pockets of moderate risk. The southeastern portion of Wisconsin is at low risk currently (Fig. 3). This is due to hotter temperatures several weeks back. Regardless of location, our models are telling us that the risk for white mold will continue to rise across the state over the next 7 to 10 days. If you are in a low-risk area and you are at R3 or beyond, you might not have much to worry about for this year when it comes to white mold. However, if you are in a moderate-risk zone, watch this situation carefully. If you are at R3 and the crop has good canopy, you might consider one late R3 application. If you are in a high-risk zone, the crop has canopied, and your soybean crop is in the bloom period, it is time to think about a fungicide application. These will be the areas I would expect to find white mold 1-3 weeks from now. If you would like to learn more about white mold management, check out my previous article HERE.

As always, get out and look at the crop. Scout, scout, scout!

It’s that time of year again: What to do about white mold of soybean?

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Shawn Conley, Extension Soybean and Small Grains Agronomist, Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison

It is time for my annual reminder about white mold in soybeans, and its management. The 2023 season in Wisconsin was all about drought and heat. So far, the 2024 season has been on the opposite end of the spectrum. Don’t be complacent about managing white mold this year.

Figure 1. Apothecia, a small mushroom-like structure of the white mold fungus that give rise to spores, which infect soybean flowers.

Remember that the white mold fungus infects soybeans through open and senescing flowers, by spores that are born from small mushroom-like structures called apothecia (Fig. 1). Remember that if the bloom period gets extended due to cool weather, this can lead to an extended window for infection by the fungus. Often cool weather is a double whammy as it is good for the white mold fungus and slows down soybean crop development, thereby extending bloom. This could be at play this season, stay on top of your game!

Given the moderate temperatures and moisture we have been getting the risk for white mold is currently moderate to high for the central to northern tiers of the state, while the far southern tier is at generally low risk (Fig. 2).

Predicting White Mold 

The flowering growth stages are a critical time to manage white mold in-season. You can view a fact sheet and video on the subject. As you probably know, timing in-season fungicide sprays at the correct time during the soybean bloom period can be extremely difficult. To help solve this decision-making issue, models were developed at the University of Wisconsin-Madison in conjunction with Michigan State University and Iowa State University to identify at-risk regions which have been experiencing weather favorable for the development of white mold apothecia. These models predict when apothecia will be present in the field using combinations of 30-day averages of maximum temperature, relative humidity, and wind speed. Using virtually available weather data, predictions can be made in most soybean growing regions. To facilitate precise predictions and make the model user-friendly, we use the Sporecaster smartphone application for Android and iPhone and also the Field Prophet app for iPhones.

Figure 2. Map of white mold risk generated in the Field Prophet app for Wisconsin, July 8, 2024.

The purpose of the smartphone app is to assist farmers in making early season management decisions for white mold in soybean. The best time to spray fungicides for white mold is during flowering (R1 and R3 growth stages) when apothecia are present on the soil surface. If you have trouble growth-staging soybeans, here is a helpful guide on correctly identifying soybean growth stages.

University research has indicated that the appearance of apothecia can be predicted using weather data and a threshold of percent soybean canopy row closure in a field. Based on these predictions and crop phenology, site-specific risk values are generated for three scenarios (non-irrigated soybeans, soybeans planted on 15″ row-spacing and irrigated, or soybeans planted on 30″ row-spacing and irrigated). Though not specifically tested we would expect row-spacings of 22 inches or less to have a similar probability response to fungicide as the 15-inch row-spacing.

The Sclerotinia apothecial models that underlie the Sporecaster prediction tool have undergone significant validation in both small test plots and in commercial production fields. In 2017, efficacy trials were conducted at agricultural research stations in Iowa, Michigan, and Wisconsin to identify fungicide application programs and thresholds for model implementation. Additionally, apothecial scouting and disease monitoring were conducted in a total of 60 commercial farmer fields in Michigan, Nebraska, and Wisconsin between 2016 and 2017 to evaluate model accuracy across the growing region. Across all irrigated and non-irrigated locations predictions during the soybean flowering period (R1 to early R4 growth stages) were found to explain end-of-season disease observations with an accuracy of 81.8% using the established probability thresholds now programmed in the app. We have made additional improvements for 2024, to further refine accuracy. So if you have used Sporecaster before, you might want to check the version in the “Help and Info” button to be sure you have version 1.41.3 of Sporecaster.

We also know that for highly susceptible soybean varieties, the action threshold should be adjusted down. Research in the upper Mid-west demonstrated that for most soybean varieties the default action threshold depicted in the tool when you set up a field is accurate. However, some varieties are highly susceptible and the action threshold should be moved down from 40% to 20% for varieties that are known to be highly susceptible. this can improve accuracy of the tool and recommendation for fungicide application.

Not only can users run predictions of risk during the soybean bloom period for any field, but you can also set up visual maps to look at multiple sites simultaneously. An example for the state of Wisconsin can be found in figure 2, which represents risk for July 8, 2024, for non-irrigated soybeans. Currently, if soybeans are flowering, risk is moderate-to-high in much of Wisconsin for non-irrigated soybeans. I personally like the Field Prophet version of the prediction tool a bit better as it provides a 7-day historical trend of risk and also provides a 7-day true forecast. The historical trend lines can be viewed on the fly in your field list (Fig. 3). If the trend is moderate, but the slope of the line is increasing, then you might want to keep a close eye on the white mold risk. We find that the trends are much more informative for decision-making vs. just the daily instantaneous risk level.

Figure 3. 7-day historical white mold risk trend lines as depicted in the Field Prophet app on July 8, 2024.

What to Spray for White Mold?

If you have decided to spray soybeans for white mold, what are the best products to use? Over the last several years we have run numerous fungicide efficacy trials in Wisconsin and in conjunction with researchers in other states. In Wisconsin, we have observed that Endura applied as a single application at 8 oz at the R3 growth stage performs well. The window to spray runs from R1 to R3, but our recent data suggests waiting a bit into that window improves efficacy of the fungicide application vs. spraying at R1. If you do choose to spray at the R3 growth stage, be sure to focus on getting good canopy penetration with your fungicide spray. Soybean canopies at R3 can be dense and hauling more water, slowing your sprayer speed, and increasing spray pressure can all help improve spray penetration in those dense canopies. Other fungicide options also include Omega and Proline. You can view results of past fungicide evaluations for Wisconsin by CLICKING HERE. If you would like to run tailored estimations of return on investment for various fungicide programs, you can use another smartphone application called Sporebuster.

What is Sporebuster?

When a fungicide application is needed to control white mold in soybeans, Sporebuster can help determine a profitable program. You enter your expected soybean price, expected yield, and treatment cost. Sporebuster instantly compares ten different treatment plans at once to determine average net gain and breakeven probability of each. You can mark, save and share by email, the best plans for your farming operation.

The purpose of Sporebuster is to assist soybean farmers in making a fungicide program decision that is profitable for their operation. Sporebuster is meant to complement Sporecaster. Once Sporecaster recommends a fungicide application, Sporebuster can be used to determine a profitable program.

Information that drives Sporebuster is based on research from 2009-2016 from across the upper Midwestern US. Statistical models were developed based on these data that included white mold pressure and yield response from fungicide for 10 common fungicide programs. Due to recent changes in the markets, be sure to manually adjust the cost of the product you are interested in, so that the tool returns an accurate estimate of return on investment. My advice is to call local suppliers and see what products you can get and what the per acre cost will be to get the application done. Details about the research behind Sporebuster can be found by CLICKING HERE.

Helpful Smartphone Application Links

Sporecaster

  1. Click here to download the Android version of Sporecaster.
  2. Click here to download the iPhone version of Sporecaster.
  3. Click here to download the Field Prophet version of Sporecaster for the iPhone.

Sporebuster

  1. Click here to download the Android version of Sporebuster.
  2. Click here to download the iPhone version of Sporebuster.
  3. Here is a video on how to use Sporebuster and interpret the output.

Other Resources

  1. To watch an in-depth video on white mold management, CLICK HERE.
  2. To find more information on white mold, view a web book from the Crop Protection Network, CLICK HERE.

Scientific References

  1. Willbur, J.F., Fall, M.L., Blackwell, T., Bloomingdale, C.A., Byrne, A.M., Chapman, S.A., Holtz, D., Isard, S.A., Magarey, R.D., McCaghey, M., Mueller, B.D., Russo, J.M., Schlegel, J., Young, M., Chilvers, M.I., Mueller, D.S., and Smith, D.L. Weather-based models for assessing the risk of Sclerotinia sclerotiorum apothecial presence in soybean (Glycine max) fields. Plant Diseasehttps://doi.org/10.1094/PDIS-04-17-0504-RE
  2. Willbur, J.F., Fall, M.L., Byrne, A.M., Chapman, S.A., McCaghey, M.M., Mueller, B.D., Schmidt, R., Chilvers, M.I., Mueller, D.S., Kabbage, M., Giesler, L.J., Conley, S.P., and Smith, D.L. Validating Sclerotinia sclerotiorum apothecial models to predict Sclerotinia stem rot in soybean (Glycine max) fields. Plant Disease. https://doi.org/10.1094/PDIS-02-18-0245-RE.
  3. Fall, M., Willbur, J., Smith, D.L., Byrne, A., and Chilvers, M. 2018. Spatiotemporal distribution pattern of Sclerotinia sclerotiorum apothecia is modulated by canopy closure and soil temperature in an irrigated soybean field. Phytopathology. https://doi.org/10.1094/PDIS-11-17-1821-RE.
  4. Willbur, J.F., Mitchell, P.D., Fall, M.L., Byrne, A.M., Chapman, S.A., Floyd, C.M., Bradley, C.A., Ames, K.A., Chilvers, M.I., Kleczewski, N.M., Malvick, D.K., Mueller, B.D., Mueller, D.S., Kabbage, M., Conley, S.P., and Smith, D.L. 2019. Meta-analytic and economic approaches for evaluation of pesticide impact on Sclerotinia stem rot control and soybean yield in the North Central U.S. Phytopathologyhttps://doi.org/10.1094/PHYTO-08-18-0289-R.
  5. Webster, R.W., Mueller, B., Conley, S.P., and Smith, D.L. 2023. Integration of soybean (Glycine max) resistance levels to Sclerotinia stem rot into predictive Sclerotinia sclerotiorum apothecial models. Plant Disease. https://doi.org/10.1094/PDIS-12-22-2875-RE.

Wisconsin Field Crops Disease Update, August 9, 2023

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Figure 1. A Screen shot of a map developed in the Field Prophet app showing risk for tar spot development in Wisconsin as of August 9, 2023.

Well, it was going to happen sometime soon, tar spot has been confirmed in two counties in Wisconsin. You can track tar spot confirmations in realtime HERE. Both Lafayette and Rock counties were confirmed to have low levels of tar spot in several fields this week. The good news is that these finds are a month behind the initial confirmations in the state for the last two seasons. What does this mean? Well, it means that the tar spot impact on grain yield will likely not be has significant as it has been over the last couple of seasons. Exceptions to this statement will include late-planted corn where the current growth stages are around VT (tasseling) and susceptible silage hybrids. You should scout and track these situations carefully. Be prepared to chop silage early if tar spot really starts to move. You will want to watch moisture carefully in these situations.

The current risk for tar spot development remains moderate to high across much of the state (Fig. 1). Cooler weather and dewy evenings and mornings are keeping the risk elevated. Fungicide applications for much of the corn in the state should have happened already. Remember the optimal time to apply fungicides to control tar spot (and most other foliar corn diseases) is between the VT (tasseling) and R3 (milk) growth stages. Spraying fungicide after R3 has not yielded much of a return on investment. If you find tar spot, please don’t hesitate to send a high-quality photo to damon.smith@wisc.edu. We don’t disclose exact locations, but do like to track the county-level tar spot information. If you would like to learn more about tar spot and managing it, see my previous post HERE.

Figure 2. Sporecaster predictions for selected non-irrigated locations in Wisconsin for August 9, 2023.

In other news, white mold risk ranges from low in the southern portion of the state to moderate and high in the mid and upper portions of the state, respectively (Fig. 2). Most soybeans are probably headed toward the R4 or R5 growth stage. This means fungicide applications will no longer yield positive returns on investment. If soybeans were planted late and they are still in the R1 to R3 growth stages and you are in a moderate to high risk area, a fungicide should be applied at this time. If you would like to learn more about white mold management, see my previous post HERE. We have observed active white mold on susceptible varieties under irrigation already this season. I am anticipating pockets of white mold in the state, especially in our typical areas of concern in the central and northeastern quadrants.

As always, make sure you are out and scouting to be prepared for what is coming ahead!

Wisconsin Field Crops Disease Update, July 27, 2023

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Shawn Conley, Extension Soybean and Small Grains Agronomist, Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison

Rains continue to fall around Wisconsin. While we still have a moderate drought in much of the state, some of that drought is being alleviated. However, with these timely rains, come disease concerns. Here are our thoughts on what is happening.

Phytophthora Root and Stem Rot of Soybean

Figure 1. Stem rot symptoms of Phythophthora rot and stem rot on soybeans.

It has been a couple of years since we have seen a significant epidemic of Phytophthora root and stem rot (PRSR) of soybean. However, since it has started raining, we have got a good look at how susceptible many of our soybean varieties are here in Wisconsin. PRSR is primarily cause by the fungal-like organism, Phytophthora sojae. PRSR is usually worse in fields that are no-till and/or are slow to drain. The PRSR pathogen likes to survive in old soybean residue and can also persist as a long-term survival structure in the soil itself. The organisms that causes PRSR becomes active if the soil temperatures are over 60 F and the soil becomes saturated. We had those conditions occur back in early to mid-July. Once the soil dried out a bit and a bit of environmental stress kicked in, we can readily observe the damage the organism caused in early July. Primarily what we are seeing right now is the stem rot phase (Fig. 1), with the symptoms including wilting of the plant and a distinct purple-brown lesion extending from the soil surface upward. If plants are pulled from the ground, you will also see poor root systems which is where the organisms typically first infects and causes damage.

At this point in the season, there is nothing that can be done.  DO NOT spray foliar fungicides for this problem. This will not be effective. You will want to check on the variety with the symptoms and consult the tech sheet to see what type of “Phytophthora gene” may have been included in the variety. These genes are called Rps genes and provide race-level resistance. The population of the PRSR pathogen can be a single race or mixed races in the field. The last time a survey of Phytophthora races was done in Wisconsin, it was noted that the Rps 1-k resistance gene should be effective on about 99% of the acres in the state. However, that survey was done over 15 years ago. Due to heavy use of the Rps 1-k resistance gene, we believe that the population in the state has shifted. We are seeing that resistance readily overcome. Unfortunately, most of the varieties currently grown in the state have this resistance. A recent check of the soybean variety trials 2022 show that out of 265 varieties tested 25% had no PRSR resistance gene, 2% had Rps 1-a, 29% Rps 1-c, 26% Rps 1-k, 9% Rps 3-a, and 9% had multi-genes. We are actively working with the Wisconsin Soybean Marketing Board to understand what the current population looks like. However, it is too early to tell what the races are primarily in our fields. Moving forward. perhaps choosing Rps 3-a or mixed gene varieties could help, but that is a shot in the dark for now.

Other things you can do for PRSR are to open up the rotation between soybean crops, and improve drainage in fields that are typically saturated for long periods of time. Like I said above, adjusting variety choice can help too. Seed treatment fungicides can also be used. However remember that the seed treatment is only going to be effective for the first 30 days or so after planting. After that we have to rely on varietal resistance to manage this problem. If you would like to find efficacy data on the seed treatments you can find that HERE.

We are looking for samples of PRSR from around Wisconsin. So feel free to reach out (damon.smith@wisc.edu) and we can coordinate getting samples sent to us. This will help with our survey efforts and eventual varietal recommendations.

Tar Spot Update

Figure 2. A Screen shot of a map developed in the Field Prophet app showing risk for tar spot development in Wisconsin as of July 27, 2023.

You can find the most recent updates on tar spot confirmations across the U.S. here: https://corn.ipmpipe.org/tarspot/.  Tarspotter is also showing mostly moderate to high risk across the state of Wisconsin (Fig. 2). This means you should be actively scouting for tar spot at this time. The risk is likely that you will find it across much of the state. If the corn growth stage is between VT/R1 and R3, then you might go ahead and consider a fungicide application. Our research has shown that one well-timed application of fungicide somewhere between VT/R1 – R3 will control tar spot enough for a yield response even in a heavy-pressure year. You can learn more about managing tar spot by clicking here. If you think you found tar spot I would appreciate if you would let us know. We can enter the county level data into the Corn IPMPipe Map and contribute to the cause.

White Mold Update

Figure 3. Sporecaster predictions for selected non-irrigated locations in Wisconsin for July 27, 2023.

The risk for white mold according to Sporecaster is a bit more spotty, compared to tar spot. Mostly the northern tier of the state is at high risk while central and southern Wisconsin varies from moderate to low (Fig. 3). If you are in a low-risk area and you are at R3 or beyond, you might not have much to worry about for this year when it comes to white mold. However, if you are in a moderate-risk zone, watch this situation carefully. If you are at R3 and the crop has good canopy, you might consider one late R3 application. If you are in a high-risk zone, the crop has canopied, and your soybean crop is in the bloom period, it is time to think about a fungicide application. The recent rains have made the risk in these areas generally stay high or increase. These will be the areas I would expect to find white mold 1-3 weeks from now. If you would like to learn more about white mold management, check out my previous article HERE.

As always, get out and look the crop. Scout, scout, scout!

It’s the 2023 Field Season and I have White Mold on My Mind

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Shawn Conley, Extension Soybean and Small Grains Agronomist, Department of Agronomy, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

Paul Mitchell, Extension Economist, Agricultural and Applied Economics, University of Wisconsin-Madison

Figure 1. Apothecia, a small mushroom-like structure of the white mold fungus that give rise to spores, which infect soybean flowers.

In Wisconsin, the first couple of weeks of July brings us a heightened awareness of white mold in soybeans, and its management. The 2022 season in Wisconsin resulted in some pockets of white mold in the state. If the weather becomes conducive in 2023, do get caught being complacent even though it seems to be too dry for white mold right now.

Remember that the white mold fungus infects soybeans through open and senescing flowers, by spores that are born from small mushroom-like structures called apothecia (Fig. 1). Remember that if the bloom period gets extended due to cool weather, this can lead to an extended window for infection by the fungus. Often cool weather is a double whammy as it is good for the white mold fungus and slows down soybean crop development, thereby extending bloom. Watch out if the weather suddenly changes!

While conditions have been hot and dry across most of the state, cooler and wetter weather could prevail in coming weeks. Currently the risk is high for much of the state, but falling rapidly due too dry conditions (Fig. 2). The white mold situation can change rapidly based on weather, thus anticipating favorable conditions for white mold, can help you protect your soybean crop.

Predicting White Mold 

The flowering growth stages are a critical time to manage white mold in-season. You can view a fact sheet and video on the subject. As you probably know, timing in-season fungicide sprays at the correct time during the soybean bloom period can be extremely difficult. To help solve this decision-making issue, models were developed at the University of Wisconsin-Madison in conjunction with Michigan State University and Iowa State University to identify at-risk regions which have been experiencing weather favorable for the development of white mold apothecia. These models predict when apothecia will be present in the field using combinations of 30-day averages of maximum temperature, relative humidity, and wind speed. Using virtually available weather data, predictions can be made in most soybean growing regions. To facilitate precise predictions and make the model user-friendly, we use the Sporecaster smartphone application for Android and iPhone and also the Field Prophet app for iPhones.

Figure 2. Sporecaster predictions for selected non-irrigated locations in Wisconsin for July 5, 2023.

The purpose of the smartphone app is to assist farmers in making early season management decisions for white mold in soybean. The best time to spray fungicides for white mold is during flowering (R1 and R3 growth stages) when apothecia are present on the soil surface. If you have trouble growth-staging soybeans, here is a helpful guide on correctly identifying soybean growth stages.

Sporecaster uses university research to turn a few simple taps on a smartphone screen into an instant forecast of the risk of apothecia being present in a soybean field, which helps growers predict the best timing for white mold treatment during the flowering period.

University research has indicated that the appearance of apothecia can be predicted using weather data and a threshold of percent soybean canopy row closure in a field. Based on these predictions and crop phenology, site-specific risk values are generated for three scenarios (non-irrigated soybeans, soybeans planted on 15″ row-spacing and irrigated, or soybeans planted on 30″ row-spacing and irrigated). Though not specifically tested we would expect row-spacings of 22 inches or less to have a similar probability response to fungicide as the 15 inch row-spacing.

The Sclerotinia apothecial models that underlie the Sporecaster prediction tool have undergone significant validation in both small test plots and in commercial production fields. In 2017, efficacy trials were conducted at agricultural research stations in Iowa, Michigan, and Wisconsin to identify fungicide application programs and thresholds for model implementation. Additionally, apothecial scouting and disease monitoring were conducted in a total of 60 commercial farmer fields in Michigan, Nebraska, and Wisconsin between 2016 and 2017 to evaluate model accuracy across the growing region. Across all irrigated and non-irrigated locations predictions during the soybean flowering period (R1 to early R4 growth stages) were found to explain end-of-season disease observations with an accuracy of 81.8% using the established probability thresholds now programmed in the app. We have made additional improvements for 2022, to further refine accuracy. So if you have used Sporecaster before, you might want to check the version in the “Help and Info” button to be sure you have version 1.41.3 of Sporecaster.

Not only can users run predictions of risk during the soybean bloom period for any field, you can also set up visual maps to look at multiple sites simultaneously. An example for the state of Wisconsin can be found in figure 2, which represents risk for July 5, 2023 for non-irrigated soybeans. Currently, if soybeans are flowering, risk is moderate to high in much of Wisconsin for non-irrigated soybeans, continued hot and dry weather is pushing the risk lower however. So continue to monitor this situation closely each day.

What to Spray for White Mold?

If you have decided to spray soybeans for white mold, what are the best products to use? Over the last several years we have run numerous fungicide efficacy trials in Wisconsin and in conjunction with researchers in other states. In Wisconsin, we have observed that Endura applied as a single application at 8 oz between the R1 and R2 growth stage performs well. Other fungicide options also include Omega and Proline. You can view results of past fungicide evaluations for Wisconsin by CLICKING HERE. If you would like to run tailored estimations of return on investment for various fungicide programs, you can use another smartphone application called Sporebuster.

What is Sporebuster?

When a fungicide application is needed to control white mold in soybeans, Sporebuster can help determine a profitable program. You enter your expected soybean price, expected yield, and treatment cost. Sporebuster instantly compares ten different treatment plans at once to determine average net gain and breakeven probability of each. You can mark, save and share by email, the best plans for your farming operation.

The purpose of Sporebuster is to assist soybean farmers in making a fungicide program decision that is profitable for their operation. Sporebuster is meant to complement Sporecaster. Once Sporecaster recommends a fungicide application, Sporebuster can be used to determine a profitable program.

Information that drives Sporebuster is based on research from 2009-2016 from across the upper Midwestern US. Statistical models were developed based on these data that included white mold pressure and yield response from fungicide for 10 common fungicide programs. Due to recent changes in the markets, be sure to manually adjust the cost of the product you are interested in, so that the tool returns an accurate estimate of return on investment. My advice is to call local suppliers and see what products you can get and what the per acre cost will be to get the application done. Details about the research behind Sporebuster can be found by CLICKING HERE.

Helpful Smartphone Application Links

Sporecaster

  1. Click here to download the Android version of Sporecaster. 
  2. Click here to download the iPhone version of Sporecaster.
  3. Click here to download the Field Prophet version of Sporecaster for the iPhone.

Sporebuster

  1. Click here to download the Android version of Sporebuster.
  2. Click here to download the iPhone version of Sporebuster.
  3. Here is a video on how to use Sporebuster and interpret the output.

Other Resources

  1. To watch an in-depth video on white mold management, CLICK HERE.
  2. To find more information on white mold, view a web book from the Crop Protection Network, CLICK HERE.

Scientific References

  1. Willbur, J.F., Fall, M.L., Blackwell, T., Bloomingdale, C.A., Byrne, A.M., Chapman, S.A., Holtz, D., Isard, S.A., Magarey, R.D., McCaghey, M., Mueller, B.D., Russo, J.M., Schlegel, J., Young, M., Chilvers, M.I., Mueller, D.S., and Smith, D.L. Weather-based models for assessing the risk of Sclerotinia sclerotiorum apothecial presence in soybean (Glycine max) fields. Plant Disease. https://doi.org/10.1094/PDIS-04-17-0504-RE
  2. Willbur, J.F.,Fall, M.L., Byrne, A.M., Chapman, S.A., McCaghey, M.M., Mueller, B.D., Schmidt, R., Chilvers, M.I., Mueller, D.S., Kabbage, M., Giesler, L.J., Conley, S.P., and Smith, D.L. Validating Sclerotinia sclerotiorumapothecial models to predict Sclerotinia stem rot in soybean (Glycine max) fields. Plant Disease. https://doi.org/10.1094/PDIS-02-18-0245-RE.
  3. Fall, M., Willbur, J., Smith, D.L., Byrne, A., and Chilvers, M. 2018. Spatiotemporal distribution pattern of Sclerotinia sclerotiorum apothecia is modulated by canopy closure and soil temperature in an irrigated soybean field. Phytopathology. https://doi.org/10.1094/PDIS-11-17-1821-RE.
  4. Willbur, J.F., Mitchell, P.D., Fall, M.L., Byrne, A.M., Chapman, S.A., Floyd, C.M., Bradley, C.A., Ames, K.A., Chilvers, M.I., Kleczewski, N.M., Malvick, D.K., Mueller, B.D., Mueller, D.S., Kabbage, M., Conley, S.P., and Smith, D.L. 2019. Meta-analytic and economic approaches for evaluation of pesticide impact on Sclerotinia stem rot control and soybean yield in the North Central U.S. Phytopathology. https://doi.org/10.1094/PHYTO-08-18-0289-R.

Wisconsin Corn and Soybean Disease Update and Forecast – July 21, 2022

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

Rain, and the return of more humid weather, has meant that risk of tar spot of corn and white mold of soybean has increased over the past week. Now is the time to think about your in-season management plan for both of these diseases. Let’s dig in a bit on what the risk looks like for each disease.

Tar Spot of Corn

This week we added Fond du Lac County to the tar spot map (Fig. 1). We also continue to see tar spot slowly increasing in plots and production fields on the Arlington research station. Looking back at our records from last season, we are tracking almost identically with what happened last year. I know folks think it is dry, but the tar spot fungus doesn’t care. It might move slow in these conditions, but the elevated humidity provides adequate leaf wetness for the disease to slowly progress. Should it start raining more regularly I expect the disease to pick up speed.

Corn is rapidly approaching (if not already at) the optimal window of opportunity (VT-R3) for spraying fungicide to control tar spot. Given the high risk for tar spot across much of the state (Fig. 2), now is the time to call in that fungicide application if you are planning on it. Given the possible constraints on locating a custom applicator, getting the order in earlier than later may ensure application of fungicide by the R3 corn growth stage. Get out and scout, scout, scout!

Figure 2. Tar Spot Risk for Wisconsin on July 21, 2022

White Mold of Soybean

White mold risk has increased from reasonably low last week, to mostly moderate across the state, this week (Fig. 3). Risk trends are also increasing, indicating that weather is continuing to become more favorable for white mold development. As we approach the R3 soybean growth stage, it will be important to make a decision on fungicide application, especially if you haven’t already applied a fungicide. If rain moves in over the next 7-10 days, expect risk to continue to increase. In irrigated fields we have been able to find apothecia (the mushroom-like structure that produces spores that infect soybean). This corroborates the increased risk we are seeing even in non-irrigated fields.

Figure 3. White mold risk in Wisconsin for July 21, 2022.

The Field Prophet Tool

For those who like all of their disease prediction tools in one place you might check out the Field Prophet version of the Tarspotter and Sporecaster apps. This tool consolidates all of our disease prediction tools into one convenient tool. The app also allows for true 7-day forecasting and will display 7-day trends to better inform your disease management decisions. Field Prophet, Inc is a startup company supported by UW-Madison and uses science-based information and the same models as Tarspotter and Sporecaster to deliver informative tools for agriculture clientele. You can also download and use Field Prophet for free for the next 6 months! You might find this tool as a handy alternative to Tarspotter and Sporecaster.

 

 

Wisconsin Corn and Soybean Disease Update and Forecast – July 14, 2022

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

Weather over the last week has been generally drier with milder temperatures in most of Wisconsin. Isolated storms have occurred and periods of leaf wetness have prevailed. So what does that mean for important plant diseases of corn and soybeans? Let’s break that down.

Tar Spot of Corn

As noted last week we found tar spot in Columbia county Wisconsin, which was the first report for 2022. This week we add Dane County to the list (Fig. 1). Tarspotter risk has remained high for much of the state over the last week due to milder temperatures and periods of leaf wetting events. It is important to note that conditions favorable for tar spot development are different than those for white mold in soybean. For white mold rain, more sustained wetting events, and cooler temperatures are required (see below). As of today (July 14, 2022) tar spot risk remains high or elevated for most of the state (Fig. 2). Over the next week the forecast is putting us a bit drier and hotter. Thus, the tar spot risk could continue to decline. However, remember that tar spot will continue to show up due to favorable weather 2 or more weeks back. The tar spot pathogen has a long incubation period (time from infection to tar spot appearance). Thus, you shouldn’t be surprised in finding tar spot at low levels over the next week. So should you spray fungicide now? If you can, wait until at least the VT (tasseling growth stage). The evidence is strong that the optimum window to spray fungicide to control tar spot is between the VT and R3 (milk) growth stages. Spraying before VT might leave corn plants vulnerable to a late-season tar spot increase. Thus, if you spray before VT, you might need to come back with a second application of fungicide closer to the R3 growth stage. For guidance on when/if to spray fungicide to manage tar spot, see my previous article.

Figure 2. Tar spot risk for Wisconsin on July 14, 2022.

White Mold of Soybean

White mold risk remains generally low and is dropping for most of the state of Wisconsin (Fig. 3). This is not surprising as temperatures have remained moderate with drier conditions. Based on the current risk and the 7-day forecast, fungicide applications can be held back. Folks should pay attention to the weather and Sporecaster risk as the crop moves into full bloom and early pod development. In recent years we have seen white mold risk increase during the late bloom time necessitating a fungicide application around the R3 growth stage. I would expect this same scenario to set up in 2022 in at least a portion of Wisconsin. Folks should monitor this situation carefully as we move ahead over the next 2 weeks. For more information on white mold and making the fungicide spray decision, see this previous article.

Figure 3. White mold risk for Wisconsin for July 14, 2022.

The Field Prophet Tool

For those who like all of their disease prediction tools in one place you might check out the Field Prophet version of the Tarspotter and Sporecaster apps. This tool consolidates all of our disease prediction tools into one convenient tool. The app also allows for true 7-day forecasting and will display 7-day trends to better inform your disease management decisions. Field Prophet, Inc is a startup company supported by UW-Madison and uses science-based information and the same models as Tarspotter and Sporecaster to deliver informative tools for agriculture clientele. You can also download and use Field Prophet for free for the next 6 months! You might find this tool as a handy alternative to Tarspotter and Sporecaster.

Hello White Mold, My Old Friend

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Shawn Conley, Extension Soybean and Small Grains Agronomist, Department of Agronomy, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

Paul Mitchell, Extension Economist, Agricultural and Applied Economics, University of Wisconsin-Madison

Figure 1. Apothecia, a small mushroom-like structure of the white mold fungus that give rise to spores, which infect soybean flowers.

In Wisconsin, the first couple of weeks of July brings us a heightened awareness of white mold in soybeans, and its management. The 2021 season in Wisconsin resulted in some pockets of white mold in the state. However, now is not the time to be complacent. If the weather becomes conducive in 2022, the situation could be much different than last year.

Remember that the white mold fungus infects soybeans through open and senescing flowers, by spores that are born from small mushroom-like structures called apothecia (Fig. 1). Remember that if the bloom period gets extended due to cool weather, this can lead to an extended window for infection by the fungus. Often cool weather is a double whammy as it is good for the white mold fungus and slows down soybean crop development, thereby extending bloom.

While conditions have been hot and dry in parts of the state, we are seeing cooler and wetter conditions over the last week. The white mold situation can change rapidly based on weather, thus anticipating favorable conditions for white mold, can help you protect your soybean crop.

Predicting White Mold 

The flowering growth stages are a critical time to manage white mold in-season. You can view a fact sheet and video on the subject. As you probably know, timing in-season fungicide sprays at the correct time during the soybean bloom period can be extremely difficult. To help solve this decision-making issue, models were developed at the University of Wisconsin-Madison in conjunction with Michigan State University and Iowa State University to identify at-risk regions which have been experiencing weather favorable for the development of white mold apothecia. These models predict when apothecia will be present in the field using combinations of 30-day averages of maximum temperature, relative humidity, and wind speed. Using virtually available weather data, predictions can be made in most soybean growing regions. To facilitate precise predictions and make the model user-friendly, we use the Sporecaster smartphone application for Android and iPhone and also the Field Prophet app for iPhones.

Figure 2. Sporecaster predictions for selected non-irrigated locations in Wisconsin for July 8, 2022.

The purpose of the smartphone app is to assist farmers in making early season management decisions for white mold in soybean. The best time to spray fungicides for white mold is during flowering (R1 and R3 growth stages) when apothecia are present on the soil surface. If you have trouble growth-staging soybeans, here is a helpful guide on correctly identifying soybean growth stages.

Sporecaster uses university research to turn a few simple taps on a smartphone screen into an instant forecast of the risk of apothecia being present in a soybean field, which helps growers predict the best timing for white mold treatment during the flowering period.

University research has indicated that the appearance of apothecia can be predicted using weather data and a threshold of percent soybean canopy row closure in a field. Based on these predictions and crop phenology, site-specific risk values are generated for three scenarios (non-irrigated soybeans, soybeans planted on 15″ row-spacing and irrigated, or soybeans planted on 30″ row-spacing and irrigated). Though not specifically tested we would expect row-spacings of 22 inches or less to have a similar probability response to fungicide as the 15 inch row-spacing.

The Sclerotinia apothecial models that underlie the Sporecaster prediction tool have undergone significant validation in both small test plots and in commercial production fields. In 2017, efficacy trials were conducted at agricultural research stations in Iowa, Michigan, and Wisconsin to identify fungicide application programs and thresholds for model implementation. Additionally, apothecial scouting and disease monitoring were conducted in a total of 60 commercial farmer fields in Michigan, Nebraska, and Wisconsin between 2016 and 2017 to evaluate model accuracy across the growing region. Across all irrigated and non-irrigated locations predictions during the soybean flowering period (R1 to early R4 growth stages) were found to explain end-of-season disease observations with an accuracy of 81.8% using the established probability thresholds now programmed in the app. We have made additional improvements for 2022, to further refine accuracy. So if you have used Sporecaster before, you might want to check the version in the “Help and Info” button to be sure you have version 1.41 of Sporecaster. If you want to learn more about the science of Sporecaster, check out the embedded video below.

Not only can users run predictions of risk during the soybean bloom period for any field, you can also set up visual maps to look at multiple sites simultaneously. An example for the state of Wisconsin can be found in figure 2, which represents risk for July 8, 2022 for non-irrigated soybeans. Currently, if soybeans are flowering, risk is moderate to low in much of Wisconsin for non-irrigated soybeans, due to the recent hot and dryer weather. In the north-eastern portions of the state, risk for flowering soybeans is higher due to cooler conditions and more frequent rain events that have occurred there. Check back to this blog regularly as I will post maps like these with interpretation of risk for Wisconsin as we move through the season.

What to Spray for White Mold?

If you have decided to spray soybeans for white mold, what are the best products to use? Over the last several years we have run numerous fungicide efficacy trials in Wisconsin and in conjunction with researchers in other states. In Wisconsin, we have observed that Endura applied as a single application at 8 oz between the R1 and R2 growth stage performs well. Other fungicide options also include Omega and Proline. You can view results of past fungicide evaluations for Wisconsin by CLICKING HERE.If you would like to run tailored estimations of return on investment for various fungicide programs, you can use another smartphone application called Sporebuster.

What is Sporebuster?

When a fungicide application is needed to control white mold in soybeans, Sporebuster can help determine a profitable program. You enter your expected soybean price, expected yield, and treatment cost. Sporebuster instantly compares ten different treatment plans at once to determine average net gain and breakeven probability of each. You can mark, save and share by email, the best plans for your farming operation.

The purpose of Sporebuster is to assist soybean farmers in making a fungicide program decision that is profitable for their operation. Sporebuster is meant to complement Sporecaster. Once Sporecaster recommends a fungicide application, Sporebuster can be used to determine a profitable program.

Information that drives Sporebuster is based on research from 2009-2016 from across the upper Midwestern US. Statistical models were developed based on these data that included white mold pressure and yield response from fungicide for 10 common fungicide programs. Due to recent changes in the markets, be sure to manually adjust the cost of the product you are interested in, so that the tool returns an accurate estimate of return on investment. My advice is to call local suppliers and see what products you can get and what the per acre cost will be to get the application done. Details about the research behind Sporebuster can be found by CLICKING HERE.

Helpful Smartphone Application Links

Sporecaster

  1. Click here to download the Android version of Sporecaster. 
  2. Click here to download the iPhone version of Sporecaster.
  3. Click here to download the Field Prophet version of Sporecaster for the iPhone.

Sporebuster

  1. Click here to download the Android version of Sporebuster.
  2. Click here to download the iPhone version of Sporebuster.
  3. Here is a video on how to use Sporebuster and interpret the output.

Other Resources

  1. To watch an in-depth video on white mold management, CLICK HERE.
  2. To find more information on white mold, view a web book from the Crop Protection Network, CLICK HERE.

Scientific References

  1. Willbur, J.F., Fall, M.L., Blackwell, T., Bloomingdale, C.A., Byrne, A.M., Chapman, S.A., Holtz, D., Isard, S.A., Magarey, R.D., McCaghey, M., Mueller, B.D., Russo, J.M., Schlegel, J., Young, M., Chilvers, M.I., Mueller, D.S., and Smith, D.L. Weather-based models for assessing the risk of Sclerotinia sclerotiorum apothecial presence in soybean (Glycine max) fields. Plant Disease. https://doi.org/10.1094/PDIS-04-17-0504-RE
  2. Willbur, J.F.,Fall, M.L., Byrne, A.M., Chapman, S.A., McCaghey, M.M., Mueller, B.D., Schmidt, R., Chilvers, M.I., Mueller, D.S., Kabbage, M., Giesler, L.J., Conley, S.P., and Smith, D.L. Validating Sclerotinia sclerotiorumapothecial models to predict Sclerotinia stem rot in soybean (Glycine max) fields. Plant Disease. https://doi.org/10.1094/PDIS-02-18-0245-RE.
  3. Fall, M., Willbur, J., Smith, D.L., Byrne, A., and Chilvers, M. 2018. Spatiotemporal distribution pattern of Sclerotinia sclerotiorum apothecia is modulated by canopy closure and soil temperature in an irrigated soybean field. Phytopathology. https://doi.org/10.1094/PDIS-11-17-1821-RE.
  4. Willbur, J.F., Mitchell, P.D., Fall, M.L., Byrne, A.M., Chapman, S.A., Floyd, C.M., Bradley, C.A., Ames, K.A., Chilvers, M.I., Kleczewski, N.M., Malvick, D.K., Mueller, B.D., Mueller, D.S., Kabbage, M., Conley, S.P., and Smith, D.L. 2019. Meta-analytic and economic approaches for evaluation of pesticide impact on Sclerotinia stem rot control and soybean yield in the North Central U.S. Phytopathology. https://doi.org/10.1094/PHYTO-08-18-0289-R.

Wisconsin Soybean and Corn Disease Update – August 2, 2021

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Brian Mueller, Assistant Field Researcher, Department of Plant Pathology, University of Wisconsin-Madison

Camila Primieri Nicolli, Post-Doctoral Research Associate, Department of Plant Pathology, University of Wisconsin-Madison

It has been a while since I posted a corn and soybean disease update for Wisconsin in 2021, and that is because it has been reasonably quiet in the disease world up to this point. However, recent scouting and incoming reports indicate that this could change a bit as we move into August. Let’s take a look at what has happened so far this season and what to keep an eye out for over the next month or so.

The Soybean Situation

Figure 1. Phytophthora Root and stem rot of soybean

The Phytophthora Issue in Soybeans. During July we saw, and received reports, of some fields with Phytophthora root and stem rot of soybean (Fig. 1). I have received a lot of questions on why this happened. Are we seeing changes in the races of the Phytophthora organism in Wisconsin? My short answer is probably not. However, we have found a new species of Phytophthora in some fields that can affect soybean. The new species, Phytophthora sansomeana, can be found in mixed infections with P. sojae. Thus, even if we deployed the proper Rps resistances genes in our varieties, this “new” organisms might be causing some of the damage we observed this year.

We also are seeing fewer available soybean varieties with Rps 1K form of resistance. This form of resistance should be effective on about 99% of the fields in Wisconsin. Instead, we see varieties deployed that have the Rps 1c, Rps 1a, or no Rps gene indicated. Rps 1C is effective on about 75% of the acres in Wisconsin, just to give you some perspective. Thus, I don’t think this is necessarily an issue where we have seen race shifts in P. sojae, but a combination of issues where perhaps we aren’t deploying the correct resistance genes and we might have a new species of Phytophthora adding to the mix. You can learn more about managing Phytophthora root and stem rot of soybean in Wisconsin by clicking here. You will note that seed treatments can also be used to manage Phytophthora root and stem rot. You can click here to learn more about fungicide seed treatments and fungicide resistance in this group of organisms.

What’s Up with White Mold? For most of the state of Wisconsin, we are through the critical bloom time for infection by the white mold fungus. It is now really too late to make a fungicide application that is economically viable. However, scouting fields through August can help you determine what worked, what didn’t, and to figure out your harvest order. Remember, a great way to move the white mold fungus around is by contaminated combines at harvest. Start harvesting fields with no or low white mold incidence and work your way to those fields that look worse. Also consider cleaning combines between fields to limit movement of the fungal survival structures (a.k.a apothecia – the things that look like rat turds!) from one field to the next.

Look out for SDS. Now is also a good time to be scouting for sudden death syndrome (SDS) in soybeans. I’m not sure we will have a bunch of SDS this year in Wisconsin, but we will see pockets for sure. Knowing where you see it and what you did in 2021 can help with making variety and seed treatment decisions for 2022 and beyond. Remember that we do have decent partial resistance to SDS in many commercial varieties. Start here and choose the most resistant variety that fits your environment. Then consider layering a seed treatment (either Saltro or ILeVO) for improved management of SDS. You can learn more about seed treatment performance by studying the Fungicide Efficacy for Control of Soybean Seedling Diseases chart. You can also learn more about the performance of ILeVO in multi-state research trials by reading this report.

The Corn Situation

Corn in Wisconsin has been reasonably free of disease up to this point this season. However, we have noted a few foliar diseases beginning to pop up. We have observed gray leaf spot (GLS) becoming easy to find in most fields, while northern corn leaf blight (NCLB) is starting to show up in a handful of fields we have visited. We are also paying close attention to the tar spot and southern rust situations, I’ll expand on these below.

How bad is tar spot? The Tarspotter app has been running at moderate to high risk of tar spot increase over the last couple of weeks in Wisconsin. Our scouting has confirmed that tar spot is present in at least 5 counties so far in Wisconsin (Fig. 2). All but Grant County show tar spot to be easy to find, but it is present in the lower canopy at low severity. In Grant County, we had to hunt a long time to find 2 spots in a research field on a known susceptible. These observations align with Tarspotter as it indicated just moderate risk in the southwest quadrant of Wisconsin, with high risk from south central to the north. If you plan on spraying a fungicide to manage tar spot, we recommend that this be done soon, prior to the R3/R4 growth stage. The goal here is to protect the leaves from the ear leaf up from continued increase by the fungus. If you would like to learn more about tar spot check out the new web book published by the Crop Protection Network.

Figure 2. County-level confirmations of tar spot in the U.S. as of August 2, 2021.

Continue to scout for tar spot and let us know what you are finding. We are now accepting good pictures of tar spot to confirm its presence in counties where we have observed it in years past, in Wisconsin. In counites that tar spot has never been confirmed, we would like to get a physical sample to verify (Fig 2). Feel free to reach out to me if you do find tar spot or any other disease of corn or soybean for that matter.

Figure 3. County-level confirmations of southern rust on corn in the U.S. as of August 2, 2021.

Has southern rust hit Wisconsin yet? The short answer is NO, not that we can find. We have scouted and asked several folks in our network, and nobody has observed and lab-confirmed southern rust in Wisconsin. However, figure 3 show county-level confirmations of southern rust of corn in the U.S. Based on this map, I would not be surprised if southern rust is confirmed in the next week or so in Wisconsin. Like tar spot, fungicides can be applied up to the R3/R4 growth stage with some benefits. Spraying after R4 will not yield economic returns. To learn more about managing southern rust of corn, check out the electronic fact sheet from the Crop Protection Network.

Keep an eye on the soybean and corn disease situation and scout, scout, scout. Let us know what you are finding!