Wisconsin Field Crops Disease Update, July 27, 2023

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Shawn Conley, Extension Soybean and Small Grains Agronomist, Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison

Rains continue to fall around Wisconsin. While we still have a moderate drought in much of the state, some of that drought is being alleviated. However, with these timely rains, come disease concerns. Here are our thoughts on what is happening.

Phytophthora Root and Stem Rot of Soybean

Figure 1. Stem rot symptoms of Phythophthora rot and stem rot on soybeans.

It has been a couple of years since we have seen a significant epidemic of Phytophthora root and stem rot (PRSR) of soybean. However, since it has started raining, we have got a good look at how susceptible many of our soybean varieties are here in Wisconsin. PRSR is primarily cause by the fungal-like organism, Phytophthora sojae. PRSR is usually worse in fields that are no-till and/or are slow to drain. The PRSR pathogen likes to survive in old soybean residue and can also persist as a long-term survival structure in the soil itself. The organisms that causes PRSR becomes active if the soil temperatures are over 60 F and the soil becomes saturated. We had those conditions occur back in early to mid-July. Once the soil dried out a bit and a bit of environmental stress kicked in, we can readily observe the damage the organism caused in early July. Primarily what we are seeing right now is the stem rot phase (Fig. 1), with the symptoms including wilting of the plant and a distinct purple-brown lesion extending from the soil surface upward. If plants are pulled from the ground, you will also see poor root systems which is where the organisms typically first infects and causes damage.

At this point in the season, there is nothing that can be done.  DO NOT spray foliar fungicides for this problem. This will not be effective. You will want to check on the variety with the symptoms and consult the tech sheet to see what type of “Phytophthora gene” may have been included in the variety. These genes are called Rps genes and provide race-level resistance. The population of the PRSR pathogen can be a single race or mixed races in the field. The last time a survey of Phytophthora races was done in Wisconsin, it was noted that the Rps 1-k resistance gene should be effective on about 99% of the acres in the state. However, that survey was done over 15 years ago. Due to heavy use of the Rps 1-k resistance gene, we believe that the population in the state has shifted. We are seeing that resistance readily overcome. Unfortunately, most of the varieties currently grown in the state have this resistance. A recent check of the soybean variety trials 2022 show that out of 265 varieties tested 25% had no PRSR resistance gene, 2% had Rps 1-a, 29% Rps 1-c, 26% Rps 1-k, 9% Rps 3-a, and 9% had multi-genes. We are actively working with the Wisconsin Soybean Marketing Board to understand what the current population looks like. However, it is too early to tell what the races are primarily in our fields. Moving forward. perhaps choosing Rps 3-a or mixed gene varieties could help, but that is a shot in the dark for now.

Other things you can do for PRSR are to open up the rotation between soybean crops, and improve drainage in fields that are typically saturated for long periods of time. Like I said above, adjusting variety choice can help too. Seed treatment fungicides can also be used. However remember that the seed treatment is only going to be effective for the first 30 days or so after planting. After that we have to rely on varietal resistance to manage this problem. If you would like to find efficacy data on the seed treatments you can find that HERE.

We are looking for samples of PRSR from around Wisconsin. So feel free to reach out (damon.smith@wisc.edu) and we can coordinate getting samples sent to us. This will help with our survey efforts and eventual varietal recommendations.

Tar Spot Update

Figure 2. A Screen shot of a map developed in the Field Prophet app showing risk for tar spot development in Wisconsin as of July 27, 2023.

You can find the most recent updates on tar spot confirmations across the U.S. here: https://corn.ipmpipe.org/tarspot/.  Tarspotter is also showing mostly moderate to high risk across the state of Wisconsin (Fig. 2). This means you should be actively scouting for tar spot at this time. The risk is likely that you will find it across much of the state. If the corn growth stage is between VT/R1 and R3, then you might go ahead and consider a fungicide application. Our research has shown that one well-timed application of fungicide somewhere between VT/R1 – R3 will control tar spot enough for a yield response even in a heavy-pressure year. You can learn more about managing tar spot by clicking here. If you think you found tar spot I would appreciate if you would let us know. We can enter the county level data into the Corn IPMPipe Map and contribute to the cause.

White Mold Update

Figure 3. Sporecaster predictions for selected non-irrigated locations in Wisconsin for July 27, 2023.

The risk for white mold according to Sporecaster is a bit more spotty, compared to tar spot. Mostly the northern tier of the state is at high risk while central and southern Wisconsin varies from moderate to low (Fig. 3). If you are in a low-risk area and you are at R3 or beyond, you might not have much to worry about for this year when it comes to white mold. However, if you are in a moderate-risk zone, watch this situation carefully. If you are at R3 and the crop has good canopy, you might consider one late R3 application. If you are in a high-risk zone, the crop has canopied, and your soybean crop is in the bloom period, it is time to think about a fungicide application. The recent rains have made the risk in these areas generally stay high or increase. These will be the areas I would expect to find white mold 1-3 weeks from now. If you would like to learn more about white mold management, check out my previous article HERE.

As always, get out and look the crop. Scout, scout, scout!

Wisconsin Soybean and Corn Disease Update – August 2, 2021

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Brian Mueller, Assistant Field Researcher, Department of Plant Pathology, University of Wisconsin-Madison

Camila Primieri Nicolli, Post-Doctoral Research Associate, Department of Plant Pathology, University of Wisconsin-Madison

It has been a while since I posted a corn and soybean disease update for Wisconsin in 2021, and that is because it has been reasonably quiet in the disease world up to this point. However, recent scouting and incoming reports indicate that this could change a bit as we move into August. Let’s take a look at what has happened so far this season and what to keep an eye out for over the next month or so.

The Soybean Situation

Figure 1. Phytophthora Root and stem rot of soybean

The Phytophthora Issue in Soybeans. During July we saw, and received reports, of some fields with Phytophthora root and stem rot of soybean (Fig. 1). I have received a lot of questions on why this happened. Are we seeing changes in the races of the Phytophthora organism in Wisconsin? My short answer is probably not. However, we have found a new species of Phytophthora in some fields that can affect soybean. The new species, Phytophthora sansomeana, can be found in mixed infections with P. sojae. Thus, even if we deployed the proper Rps resistances genes in our varieties, this “new” organisms might be causing some of the damage we observed this year.

We also are seeing fewer available soybean varieties with Rps 1K form of resistance. This form of resistance should be effective on about 99% of the fields in Wisconsin. Instead, we see varieties deployed that have the Rps 1c, Rps 1a, or no Rps gene indicated. Rps 1C is effective on about 75% of the acres in Wisconsin, just to give you some perspective. Thus, I don’t think this is necessarily an issue where we have seen race shifts in P. sojae, but a combination of issues where perhaps we aren’t deploying the correct resistance genes and we might have a new species of Phytophthora adding to the mix. You can learn more about managing Phytophthora root and stem rot of soybean in Wisconsin by clicking here. You will note that seed treatments can also be used to manage Phytophthora root and stem rot. You can click here to learn more about fungicide seed treatments and fungicide resistance in this group of organisms.

What’s Up with White Mold? For most of the state of Wisconsin, we are through the critical bloom time for infection by the white mold fungus. It is now really too late to make a fungicide application that is economically viable. However, scouting fields through August can help you determine what worked, what didn’t, and to figure out your harvest order. Remember, a great way to move the white mold fungus around is by contaminated combines at harvest. Start harvesting fields with no or low white mold incidence and work your way to those fields that look worse. Also consider cleaning combines between fields to limit movement of the fungal survival structures (a.k.a apothecia – the things that look like rat turds!) from one field to the next.

Look out for SDS. Now is also a good time to be scouting for sudden death syndrome (SDS) in soybeans. I’m not sure we will have a bunch of SDS this year in Wisconsin, but we will see pockets for sure. Knowing where you see it and what you did in 2021 can help with making variety and seed treatment decisions for 2022 and beyond. Remember that we do have decent partial resistance to SDS in many commercial varieties. Start here and choose the most resistant variety that fits your environment. Then consider layering a seed treatment (either Saltro or ILeVO) for improved management of SDS. You can learn more about seed treatment performance by studying the Fungicide Efficacy for Control of Soybean Seedling Diseases chart. You can also learn more about the performance of ILeVO in multi-state research trials by reading this report.

The Corn Situation

Corn in Wisconsin has been reasonably free of disease up to this point this season. However, we have noted a few foliar diseases beginning to pop up. We have observed gray leaf spot (GLS) becoming easy to find in most fields, while northern corn leaf blight (NCLB) is starting to show up in a handful of fields we have visited. We are also paying close attention to the tar spot and southern rust situations, I’ll expand on these below.

How bad is tar spot? The Tarspotter app has been running at moderate to high risk of tar spot increase over the last couple of weeks in Wisconsin. Our scouting has confirmed that tar spot is present in at least 5 counties so far in Wisconsin (Fig. 2). All but Grant County show tar spot to be easy to find, but it is present in the lower canopy at low severity. In Grant County, we had to hunt a long time to find 2 spots in a research field on a known susceptible. These observations align with Tarspotter as it indicated just moderate risk in the southwest quadrant of Wisconsin, with high risk from south central to the north. If you plan on spraying a fungicide to manage tar spot, we recommend that this be done soon, prior to the R3/R4 growth stage. The goal here is to protect the leaves from the ear leaf up from continued increase by the fungus. If you would like to learn more about tar spot check out the new web book published by the Crop Protection Network.

Figure 2. County-level confirmations of tar spot in the U.S. as of August 2, 2021.

Continue to scout for tar spot and let us know what you are finding. We are now accepting good pictures of tar spot to confirm its presence in counties where we have observed it in years past, in Wisconsin. In counites that tar spot has never been confirmed, we would like to get a physical sample to verify (Fig 2). Feel free to reach out to me if you do find tar spot or any other disease of corn or soybean for that matter.

Figure 3. County-level confirmations of southern rust on corn in the U.S. as of August 2, 2021.

Has southern rust hit Wisconsin yet? The short answer is NO, not that we can find. We have scouted and asked several folks in our network, and nobody has observed and lab-confirmed southern rust in Wisconsin. However, figure 3 show county-level confirmations of southern rust of corn in the U.S. Based on this map, I would not be surprised if southern rust is confirmed in the next week or so in Wisconsin. Like tar spot, fungicides can be applied up to the R3/R4 growth stage with some benefits. Spraying after R4 will not yield economic returns. To learn more about managing southern rust of corn, check out the electronic fact sheet from the Crop Protection Network.

Keep an eye on the soybean and corn disease situation and scout, scout, scout. Let us know what you are finding!

2016 DATCP Soybean Phytophthora Survey Update

Brown discoloration of a soybean stem as a result of infection by Phytophthora sojae. Photo Credit: Craig Grau.

Brown discoloration of a soybean stem as a result of infection by Phytophthora sojae. Photo Credit: Craig Grau.

Anette Phibbs, Plant Industry Laboratory Director, Wisconsin Department of Agriculture, Trade and Consumer Protection

Damon L. Smith, Extension Field Crops Pathologist, University of Wisconsin-Madison

The Wisconsin Department of Agriculture, Trade, and Consumer Protection (DATCP) pest survey team collected soybean seedlings from 30 fields in eleven counties (Crawford, Dane, Fond Du Lac, Dodge, Grant, Green, LaFayette, Iowa, Jefferson, Racine and Rock Cos.) in Wisconsin in 2016. As of June 30, 11 of the 30 fields, or 36.6% have tested positive for Phytophthora sojae. The DATCP team is planning to collect 20 more samples including northern soybean growing areas in the state. Additionally, detection for other Phytophthora species will be performed once all samples are collected.

For information about Phytophthora root and stem rot caused by P. sojae, CLICK HERE to download a fact sheet. Additionally, you can visit the soybean disease page by CLICKING HERE and scrolling down to “Phytophthora root and stem rot.”

Wisconsin Soybean Phytophthora Root Rot Survey Update

Phytophthora Root Rot of Soybean

Phytophthora Root Rot of Soybean

Anette Phibbs, Plant Pathologist with the Wisconsin Department of Agriculture and Consumer Protection, reports that the 2014 survey of early vegetative soybeans shows high levels of Phytophthora root rot disease caused by Phytophthora sojae. Nearly half of soybean fields sampled from June 6 to July 16 in 35 surveyed counties were infected with this fungus-like pathogen. Lab testing of root samples showed 26 out of 53 (49%) fields tested positive for P. sojae. Fields that tested positive were found in the following 15 counties: Barron, Clark, Dane, Green, Jefferson, Kenosha, Lafayette, Manitowoc, Marathon, Ozaukee, Rock, Sheboygan, St. Croix, Walworth, Winnebago.  Counties were the problem was not encountered should not expect to be free from the disease. This is the highest prevalence of soybean root rot since the start of this survey in 2008. During the flood prone spring of 2010 the pest survey team found 38% of fields infected. This high prevalence of Phytophthora root rot throughout the surveyed area is no doubt due to heavy rainfalls causing saturated soils and relatively low temperatures this spring which have been very conducive to this water mold. A relatively new Phytophthora species, P. sansomeana, was detected in soybean roots in Calumet, Dunn and Eau Claire Counties. This pathogen was first detected in Wisconsin soybeans in 2012 in Jefferson, Marathon and Sheboygan counties; again in 2013 in Dane, Green, Outagamie and Sheboygan counties. Research into P. sansomeana’s potential effect on soybean and corn are ongoing.

For more about Phytopthora root rot of soybean, visit an informational webpage by clicking here and scrolling down to “Phytophthora Stem and Root Rot” or download a UWEX fact sheet by clicking here. Specific questions can be directed to Damon L. Smith, Field Crops Extension Pathologist, University of Wisconsin-Madison at dlsmith26@wisc.edu.