What Should I do About Tar Spot of Corn in 2023?

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Brian Mueller, Researcher II, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

It didn’t take long this year to find tar spot in the Midwest. Over the last several weeks we have seen confirmed positives for tar spot in parts of Iowa, Missouri, Kansas, and Nebraska (Fig. 1). This is earlier than last year despite. With that said, the severity is extremely low and does not necessitate spraying fungicide at the moment! So what should you do?

Figure 1. Map of U.S. counties where tar spot has been confirmed in the 2023 season, as of July 5, 2023. Map source: https://corn.ipmpipe.org/tarspot/.

What should I do?

My advice is to get prepared and make sure you have the tools in place to deal with this problem. As I said the last few seasons, tar spot is here to stay and we need to simply be prepared and ready to fight the disease. The first line of defense is to know if you have had tar spot before. This will tell you if there is resident inoculum sources present that can initiate epidemics. If you have seen tar spot on your farm before, then assume the pathogen is present and in close proximity to corn (the host). Remember the disease triangle? The last component of the triangle is the weather. If there has been conducive weather then the triangle has been met and risk is high for finding tar spots. So how do you know if the weather is conducive? Well, there is an app for that!

Tarspotter and Field Prophet are both Smartphone applications that can help you determine if the weather has been conducive to put your corn crop at high risk of tar spot development. Figure 2 shows a map of Wisconsin from the Field Prophet version of the tool that is showing that weather has been highly conducive for the development of tar spots. The app DOES NOT tell you if the pathogen is present. We are working on this part of the triangle to improve our predictions, but you need to determine if the pathogen is present in your field. This tool just tells you if the weather has been conducive.

Figure 2. A Screen shot of a map developed in the Field Prophet app showing risk for tar spot development in Wisconsin as of July 5, 2023.

So what weather is conducive for tar spot development? You are probably asking yourself this as we are in an epic drought, yet the forecasted risk of tar spot is high across the state. Well conducive weather for the pathogen it is different that the weather needed to grow corn. Yes, precipitation is helpful, but more importantly, we need intermittent wet/dry cycles to give us intermittent leaf wetness. Specifically leaf wetness at night. What gives leaf wetness this time of year other than rain? That would be high dew points and humidity. These variables are included in the models that run in Tarspotter and Field Prophet. We also include temperature which is an influential variable too. These variables are measured over the last 14 days and 30 days and included in each daily run of the tool. We use the GPS on the smartphone to pull down cloud-based weather for a precise location. Thus, these results are site-specific. I also like to the use the Field Prophet version of the models as this version provides a 7-day trend line on how weather has been progressing and also allows for a true 7-day forecast. These additional tools can better help with the decision-making process. If you would like to learn more about the “nuts and bolts” that run behind the smartphone apps, you can find our research publication HERE.

My corn is at V10, should I spray Fungicide?

My short answer is no! The disease is just getting started. If you find it in Wisconsin right now, it will be at low severity and is low in the canopy on leaves that are not going to contribute to yield. My advice is to use your prior knowledge of where tar spot occurred and the Tarspotter tool to help guide your scouting efforts. Get out into the fields and know what you are dealing with. Figure 3 shows various severity levels on a corn leaf. We don’t start to see yield loss until we reach about 10% severity on the ear leaves or above. Thus, you have time! Target fields planted to known susceptible hybrids. Get yourself prepared and use those lower leaves to monitor severity and tar spot progress. Be ready to protect (put fungicide on) those leaves that contribute to yield (ear leaf and above), later on especially if the weather becomes increasingly conducive (think wet/dry cycles!) and/or your scouting indicates severity is increasing.

When should I spray fungicide? What should I use?

Figure 3. Tar spot severity diagram indicating various levels of tar spot on corn leaves. Yield loss isn’t typically detectable in the field until severity reaches 10% or more on the ear leaf or leaves above this leaf.

Our recent work has shown that if you get the product right, you can generally control tar spot to the point to preserve your yield potential, with one well timed spray. So what is that timing of the single application? That would be between the VT (tasseling) and R3 (milk) growth stages. We determined this using a series of trials where we did single applications of fungicide for individual growth stages. Figure 4 shows the results of two trials from 2020 where the window of opportunity to reduce the severity of tar spot with a single application is between VT and R3. Yes, the two-spray program (V8+VT) did also control tar spot, but all the work was done by the VT application, not the V8-timed spray! Thus, if you chose to spray your 2023 crop at this point in the season, you stand a good chance of having to come back with a second application later in the season.

Also notice in figure 4 that Tarspotter was tested in 2020 and did not perform very well. This was an early iteration of the tool and we have since improved its performance. So please don’t judge the tool based on this figure. If you would like to see how Tarspotter performed in advising fungicide applications last season, check out this article based on the 2021 field season.

Now the questions is what fungicide should you choose? The short answer is that you have lots of options. You can learn more about fungicides and fungicide performance by CLICKING HERE. You can also check out the efficacy of various fungicides based on a collective of University research by viewing the “Fungicide Efficacy for Control of Corn Diseases” on the Crop Protection Network website. In addition, Dr. Darcy Telenko at Purdue University led an effort to publish data from a multi-state coordinated fungicide trial where we tested various fungicides during the 2021 epidemic.

Figure 4. Tar spot intensity after spraying fungicide once at each corn growth stage during the 2020 field season.

 

Figures 5 shows the tar spot severity, while figure 6 the corn yield, from those trials where a single application of each of the products was made at the VT growth stage. Clearly you have lots of options when it comes to products that can control tar spot. That is good news! Yes, some products do a bit better in preserving yield over others, but all fungicides tested in 2021 resulted in numerically higher yields than not-treating. Remember that 2021 was a banner year for tar spot. These results might not be as clear in a year where tar spot is not as intense.

Figure 5. Tar spot severity from multi-state trials where corn was treated with foliar fungicides at the VT corn growth stage, or not treated. Source: Telenko et al., 2022 – https://apsjournals.apsnet.org/doi/10.1094/PHP-02-22-0012-BR.

Figure 6. Corn yield from multi-state trials where corn was treated with foliar fungicides at the VT corn growth stage, or not treated. Source: Telenko et al., 2022 – https://apsjournals.apsnet.org/doi/10.1094/PHP-02-22-0012-BR.

The Conclusion

DON’T PANIC! This is just a call to be ready. Download the apps and know what the weather is doing. Use your prior knowledge and scouting in key locations to track tar spot. Get your management plan in place. Have your fungicide of choice available. Communicate with your custom applicator. Be ready to spray between the VT and R3 growth stages if you plan to use just one fungicide application and you are seeing tar spot increase. If you spray between the V8 and VT growth stages, be ready to monitor the smartphone apps and do more scouting as you might have to pull the trigger again later in the season. Get out and SCOUT, SCOUT, SCOUT!

Other Resources

2022 Wisconsin Fungicide Test and Disease Management Summary Now Available!

Brian Mueller, Researcher II, UW-Madison, Plant Pathology

Damon Smith, Associate Professor and Extension Specialist, UW-Madison, Plant Pathology

Each year the Wisconsin Field Crops Pathology Program conducts a wide array of fungicide and disease management tests on alfalfa, corn, soybeans, and wheat. These tests help inform researchers, practitioners, and farmers about the efficacy of certain fungicide products on specific diseases and how to pair them with other disease management strategies. We hope you find this report useful in making decisions for the 2023 field season.

The 2022 Wisconsin Field Crops Fungicide Test and Disease Management Summary is available by clicking here. These tests are by no means an exhaustive evaluation of all products available, but can be used to understand the general performance of a particular fungicide in a particular environment. Keep in mind that the best data to make an informed decision, come from multiple years and environments. To find fungicide performance data from Wisconsin in other years, visit the Wisconsin Fungicide Test Summaries page. You can also consult publication A3646 – Pest Management in Wisconsin Field Crops to find information on products labeled for specific crops and efficacy ratings for particular products. Additional efficacy ratings for some fungicide products for corn foliar fungicidessoybean foliar and seed-applied fungicides, and wheat foliar fungicides can be found on the Crop Protection Network website.

Mention of specific products in these publications are for your convenience and do not represent an endorsement or criticism. Remember that this is by no means a complete test of all products available.  You are responsible for using pesticides according to the manufacturers current label. Some products listed in the reports referenced above may not actually have an approved Wisconsin pesticide label. Be sure to check with your local extension office or agricultural chemical supplier to be sure the product you would like to use has an approved label.  Follow all label instructions when using any pesticide. Remember the label is the law!

Are My Fungicides Messing with the Good (Microbes) Guys?

The following blog post was written as a part of a graduate level class assignment at the University of Wisconsin-Madison. Of course much more work needs to be done in this area, but there is some interesting “food for thought” and should be considered the next time you might want to spray a fungicide.    ~Damon Smith, Professor and Extension Specialist

 

Kelly Debbink, master’s student, Department of Plant Pathology, University of Wisconsin-Madison

Have you ever wondered if fungicides can negatively impact soil microbes? Since their job is to kill fungi, it seems logical that they may have this effect on the fungi in the soil, right? This thought process is exactly what led me into reading a few too many published studies related to the topic.

Background

Let me start with a bit of what we know about soil microbes (mainly fungi and bacteria). Some microbes form symbiotic relationships with plants, through which they can colonize the root system (rhizosphere), the above ground plant surfaces (phyllosphere), and even internal tissues (endosphere). These microbes can help plants access nutrients and water, fight off diseases caused by other pathogenic microbes, and deal with stressful environments. Many other types of microbes may not form direct relationships with plants, but still live in the soil and provide services, like breaking down nutrients.

To carry out many of these useful activities, microorganisms produce diverse groups of enzymes. They are proteins that work to facilitate different processes and are necessary in many services related to soil health, including decomposing organic matter, nutrient cycling, and degrading hazardous compounds. Enzyme amounts are sensitive to environmental factors like pH and soil organic matter as well as management practices like crop type, chemical use, and fertilizer use. Any alteration of the soil microbial community will lead to changes in enzyme production, so they are commonly used as a soil health indicator. Lower enzyme levels are generally tied to less fertile soil and less productive crops.

So, if microbes are responsible for all these services, could we be causing them harm and hindering some of these services when we apply fungicides?

In my search I was specifically hoping to find field research instead of lab research, so I could find information that was a closer proximation to real life conditions. I will admit that most studies I found on this topic were performed in the lab by removing soil from an agricultural region, dosing it with fungicides, and running soil health tests on it. I did find a few field studies in which treated and non-treated plots were compared in normal cropping systems. These studies were all a bit different in their approaches to measuring changes, and they tested many different fungicides with different modes of action, so I would not compare these studies side-by-side to each other, but I will share some general trends that appeared in their results.

Soil Microbes

To start, there do appear to be shifts in some of the fungal and bacterial communities related to fungicide treatments. In a study that looked at seed coatings (fungicides & insecticides), these did not appear to decrease the richness (total # of microbe species) but did shift the abundance of different groups of microbes. In another study, the number of culturable bacteria and fungi were decreased, which at least suggested a decrease in richness of the subset of microbes that are culturable on lab media. Other lab experiments showed declines or shifts in the fungal community, but differing results on the bacterial community (they may decline as well or may increase). In some conditions, bacteria may be able to thrive once they have decreased competition from fungi. In one field trial, the label application rate and 2x the label rate led to short-term declines in measures of viable microbes. These declines all recovered by harvest. Additionally, this study tested 10x the label rate, but in this treatment, microbes remained low through harvest.

Soil Enzymes

Shifts in soil enzymes related to microbial activity and nutrient cycling were observed in multiple field trials. The general trend appears to be that at lower fungicide application levels, like label rate and twice the label rate, these enzymes may shift up and down, but often return near normal levels by harvest time. In contrast, the study that applied 10x the label rate observed declines in most enzymes that did not recover by harvest. This suggests that improper overuse or accumulation of fungicides may be detrimental to soil functions like nutrient cycling.

Conclusion

Overall, there are many environmental conditions that play a role in soil fungal and bacterial populations and enzyme activity. Many management decisions can have an impact on these, like crop rotation, tillage, and fertilizer use. Chemical use, like fungicides and other types of pesticides, likely also play a role in at least short-term shifts in soil microbes and enzyme activity. Obviously, the main goal of these fungicides is to control disease, and they are certainly a useful and necessary tool to protect crop yields and minimize disease. However, these studies do help remind us that there can be negative soil health effects to their overuse, in addition to the increased risk of pesticide resistance. It’s a good reminder that fungicides are only one tool in the toolbox, and other management decisions like choosing resistant varieties can help us control disease with fewer necessary fungicide applications.

 

References:

Background

Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013 Jun 25;14(6):209. doi: 10.1186/gb-2013-14-6-209. PMID: 23805896; PMCID: PMC3706808.

Chettri, D., Sharma, B., Verma, A. K., & Verma, A. K. (2021). Significance of Microbial Enzyme Activities in Agriculture. Microbiological Activity for Soil and Plant Health Management, 351–373. https://doi.org/10.1007/978-981-16-2922-8_15

Field Trials

Hou, K., Lu, C., Shi, B., Xiao, Z., Wang, X., Zhang, J., Cheng, C., Ma, J., Du, Z., Li, B., & Zhu, L. (2022). Evaluation of agricultural soil health after applying pyraclostrobin in wheat/maize rotation field based on the response of soil microbes. Agriculture, Ecosystems & Environment, 340, 108186. https://doi.org/10.1016/j.agee.2022.108186

Saha, A., Pipariya, A., & Bhaduri, D. (2016). Enzymatic activities and microbial biomass in peanut field soil as affected by the foliar application of tebuconazole. Environmental Earth Sciences, 75(7). https://doi.org/10.1007/s12665-015-5116-x

‌ Nettles, R., Watkins, J., Ricks, K., Boyer, M., Licht, M., Atwood, L. W., Peoples, M., Smith, R. G., Mortensen, D. A., & Koide, R. T. (2016). Influence of pesticide seed treatments on rhizosphere fungal and bacterial communities and leaf fungal endophyte communities in maize and soybean. Applied Soil Ecology, 102, 61–69. https://doi.org/10.1016/j.apsoil.2016.02.008

Lab Experiments

Han, L., Xu, M., Kong, X., Liu, X., Wang, Q., Chen, G., Xu, K., & Nie, J. (2022). Deciphering the diversity, composition, function, and network complexity of the soil microbial community after repeated exposure to a fungicide boscalid. Environmental Pollution, 312, 120060. https://doi.org/10.1016/j.envpol.2022.120060

‌ Cycoń, M., Piotrowska-Seget, Z., & Kozdrój, J. (2010). Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. International Biodeterioration & Biodegradation, 64(4), 316–323. https://doi.org/10.1016/j.ibiod.2010.03.006

 

2022 Badger Crops and Soils Update Meetings

The annual UW Agronomy, Pest Management and Soil, Water, and Nutrient Management meetings are moving to a new format this year and will be offered as a single day-long program. Two in-person sessions as well as a virtual option will be offered. In-person sessions in Green Bay and La Crosse will follow the same agenda. The virtual option will follow a similar but abbreviated agenda.

This year’s program will be focused on the theme of “Achieving a Positive Return on Investment in an Era of High Input Costs (a.k.a Small steps, Big change).” The meetings will present the latest information on agronomic, pest, and nutrient management research coming out of UW with a lens to on-farm application.

For details and to register for the event, please CLICK HERE or scan the QR code in the attached flyer. We are looking forward to seeing you and kicking off a busy winter meeting season!

Wisconsin Corn and Soybean Disease Update and Forecast – July 21, 2022

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

Rain, and the return of more humid weather, has meant that risk of tar spot of corn and white mold of soybean has increased over the past week. Now is the time to think about your in-season management plan for both of these diseases. Let’s dig in a bit on what the risk looks like for each disease.

Tar Spot of Corn

This week we added Fond du Lac County to the tar spot map (Fig. 1). We also continue to see tar spot slowly increasing in plots and production fields on the Arlington research station. Looking back at our records from last season, we are tracking almost identically with what happened last year. I know folks think it is dry, but the tar spot fungus doesn’t care. It might move slow in these conditions, but the elevated humidity provides adequate leaf wetness for the disease to slowly progress. Should it start raining more regularly I expect the disease to pick up speed.

Corn is rapidly approaching (if not already at) the optimal window of opportunity (VT-R3) for spraying fungicide to control tar spot. Given the high risk for tar spot across much of the state (Fig. 2), now is the time to call in that fungicide application if you are planning on it. Given the possible constraints on locating a custom applicator, getting the order in earlier than later may ensure application of fungicide by the R3 corn growth stage. Get out and scout, scout, scout!

Figure 2. Tar Spot Risk for Wisconsin on July 21, 2022

White Mold of Soybean

White mold risk has increased from reasonably low last week, to mostly moderate across the state, this week (Fig. 3). Risk trends are also increasing, indicating that weather is continuing to become more favorable for white mold development. As we approach the R3 soybean growth stage, it will be important to make a decision on fungicide application, especially if you haven’t already applied a fungicide. If rain moves in over the next 7-10 days, expect risk to continue to increase. In irrigated fields we have been able to find apothecia (the mushroom-like structure that produces spores that infect soybean). This corroborates the increased risk we are seeing even in non-irrigated fields.

Figure 3. White mold risk in Wisconsin for July 21, 2022.

The Field Prophet Tool

For those who like all of their disease prediction tools in one place you might check out the Field Prophet version of the Tarspotter and Sporecaster apps. This tool consolidates all of our disease prediction tools into one convenient tool. The app also allows for true 7-day forecasting and will display 7-day trends to better inform your disease management decisions. Field Prophet, Inc is a startup company supported by UW-Madison and uses science-based information and the same models as Tarspotter and Sporecaster to deliver informative tools for agriculture clientele. You can also download and use Field Prophet for free for the next 6 months! You might find this tool as a handy alternative to Tarspotter and Sporecaster.

 

 

Wisconsin Corn and Soybean Disease Update and Forecast – July 14, 2022

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

Weather over the last week has been generally drier with milder temperatures in most of Wisconsin. Isolated storms have occurred and periods of leaf wetness have prevailed. So what does that mean for important plant diseases of corn and soybeans? Let’s break that down.

Tar Spot of Corn

As noted last week we found tar spot in Columbia county Wisconsin, which was the first report for 2022. This week we add Dane County to the list (Fig. 1). Tarspotter risk has remained high for much of the state over the last week due to milder temperatures and periods of leaf wetting events. It is important to note that conditions favorable for tar spot development are different than those for white mold in soybean. For white mold rain, more sustained wetting events, and cooler temperatures are required (see below). As of today (July 14, 2022) tar spot risk remains high or elevated for most of the state (Fig. 2). Over the next week the forecast is putting us a bit drier and hotter. Thus, the tar spot risk could continue to decline. However, remember that tar spot will continue to show up due to favorable weather 2 or more weeks back. The tar spot pathogen has a long incubation period (time from infection to tar spot appearance). Thus, you shouldn’t be surprised in finding tar spot at low levels over the next week. So should you spray fungicide now? If you can, wait until at least the VT (tasseling growth stage). The evidence is strong that the optimum window to spray fungicide to control tar spot is between the VT and R3 (milk) growth stages. Spraying before VT might leave corn plants vulnerable to a late-season tar spot increase. Thus, if you spray before VT, you might need to come back with a second application of fungicide closer to the R3 growth stage. For guidance on when/if to spray fungicide to manage tar spot, see my previous article.

Figure 2. Tar spot risk for Wisconsin on July 14, 2022.

White Mold of Soybean

White mold risk remains generally low and is dropping for most of the state of Wisconsin (Fig. 3). This is not surprising as temperatures have remained moderate with drier conditions. Based on the current risk and the 7-day forecast, fungicide applications can be held back. Folks should pay attention to the weather and Sporecaster risk as the crop moves into full bloom and early pod development. In recent years we have seen white mold risk increase during the late bloom time necessitating a fungicide application around the R3 growth stage. I would expect this same scenario to set up in 2022 in at least a portion of Wisconsin. Folks should monitor this situation carefully as we move ahead over the next 2 weeks. For more information on white mold and making the fungicide spray decision, see this previous article.

Figure 3. White mold risk for Wisconsin for July 14, 2022.

The Field Prophet Tool

For those who like all of their disease prediction tools in one place you might check out the Field Prophet version of the Tarspotter and Sporecaster apps. This tool consolidates all of our disease prediction tools into one convenient tool. The app also allows for true 7-day forecasting and will display 7-day trends to better inform your disease management decisions. Field Prophet, Inc is a startup company supported by UW-Madison and uses science-based information and the same models as Tarspotter and Sporecaster to deliver informative tools for agriculture clientele. You can also download and use Field Prophet for free for the next 6 months! You might find this tool as a handy alternative to Tarspotter and Sporecaster.

We Found Tar Spot of Corn in 2022, Now What?

Damon Smith, Extension Field Crops Pathologist, Department of Plant Pathology, University of Wisconsin-Madison

Brian Mueller, Researcher II, Department of Plant Pathology, University of Wisconsin-Madison

Roger Schmidt, Nutrient and Pest Management Program, University of Wisconsin-Madison

It didn’t take long this year to find tar spot in the corn crop in the Midwest. Last week brought on the first county-wide reports of tar spot in Iowa and now we have found tar spot on corn in Columbia Co. Wisconsin as of July 6, 2022 (Fig 1). This is the earliest in the season, and the earliest growth stage of corn, that I have ever seen tar spot in Wisconsin. With that said, the severity is extremely low and does not necessitate spraying fungicide at the moment! So what should you do now?

Figure 1. Map of U.S. counties where tar spot has been confirmed in the 2022 season, as of July 7, 2022. Map source: https://corn.ipmpipe.org/tarspot/.

What should I do?

My advice is to get prepared and make sure you have the tools in place to deal with this problem. As I said last season, tar spot is here to stay and we need to simply be prepared and ready to fight the disease. The first line of defense is to know if you have had tar spot before. This will tell you if there is resident inoculum sources present that can initiate epidemics. If you have seen tar spot on your farm before, then assume the pathogen is present and in close proximity to corn (the host). Remember the disease triangle? The last component of the triangle is the weather. If there has been conducive weather then the triangle has been met and risk is high for finding tar spots. So how do you know if the weather is conducive? Well, there is an app for that!

Tarspotter and Field Prophet are both Smartphone applications that can help you determine if the weather has been conducive to put your corn crop at high risk of tar spot development. Figure 2 shows a map of Wisconsin from the Field Prophet version of the tool that is showing that weather has been highly conducive for the development of tar spots. The app DOES NOT tell you if the pathogen is present. We are working on this part of the triangle to improve our predictions, but you need to determine if the pathogen is present in your field. This tool just tells you if the weather has been conducive.

Figure 2. A Screen shot of a map developed in the Field Prophet app showing risk for tar spot development in Wisconsin as of July 7, 2022.

So what weather is conducive for tar spot development? Well, it is different that the weather needed to grow corn. Yes, precipitation is helpful, but more importantly, we need leaf wetness. Specifically leaf wetness at night. What gives leaf wetness this time of year other than rain? That would be high dew points and humidity. These variables are included in the models that run in Tarspotter and Field Prophet. We also include temperature (not as important as you think it would be) and precipitation. These variables are measured over the last 14 days and included in each daily run of the tool. We use the GPS on the smartphone to pull down cloud-based weather for a precise location. Thus, these results are site-specific. I also like to the use the Field Prophet version of the models as this version provides a 7-day trend line on how weather has been progressing and also allows for a true 7-day forecast. These additional tools can better help with the decision-making process.

My corn is at V8 or V10, should I spray Fungicide?

My short answer is no! The disease is just getting started. It is at low severity (Fig. 3) and is low in the canopy on leaves that are not going to contribute to yield. My advice is to use your prior knowledge of where tar spot occurred and the Tarspotter tool to help guide your scouting efforts. Get out into the fields and know what you are dealing with. Target field planted to known susceptible hybrids. Get yourself prepared and use those lower leaves to monitor severity and tar spot progress. Be ready to protect (put fungicide on) those leaves that contribute to yield (ear leaf and above), later on.

When should I spray fungicide? What should I use?

Figure 3. A single tar spot on a lower leaf of corn in Wisconsin on July 6, 2022.

Our recent work has shown that if you get the product right, you can generally control tar spot to the point to preserve your yield potential, with one well timed spray. So what is that timing of the single application? That would be between the VT (tasseling) and R3 (milk) growth stages. We determined this using a series of trials where we did single applications of fungicide for individual growth stages. Figure 4 shows the results of two trials from 2020 where the window of opportunity to reduce the severity of tar spot with a single application is between VT and R3. Yes, the two-spray program (V8+VT) did also control tar spot, but all the work was done by the VT application, not the V8-timed spray! Thus, if you chose to spray your 2022 crop at this point in the season, you stand a good chance of having to come back with a second application later in the season.

Also notice in figure 4 that Tarspotter was tested in 2020 and did not perform very well. This was an early iteration of the tool and we have since improved its performance. So please don’t judge the tool based on this figure. If you would like to see how Tarspotter performed in advising fungicide applications last season, check out this article based on the 2021 field season.

Now the questions is what fungicide should you choose? The short answer is that you have lots of options. You can learn more about fungicides and fungicide performance by CLICKING HERE. You can also check out the efficacy of various fungicides based on a collective of University research by viewing the “Fungicide Efficacy for Control of Corn Diseases” on the Crop Protection Network website. In addition, Dr. Darcy Telenko at Purdue University led an effort to publish data from a multi-state coordinated fungicide trial where we tested various fungicides during the 2021 epidemic.

Figure 4. Tar spot intensity after spraying fungicide once at each corn growth stage during the 2020 field season.

 

Figures 5 shows the tar spot severity, while figure 6 the corn yield, from those trials where a single application of each of the products was made at the VT growth stage. Clearly you have lots of options when it comes to products that can control tar spot. That is good news! Yes, some products do a bit better in preserving yield over others, but all fungicides tested in 2021 resulted in numerically higher yields than not-treating. Remember that 2021 was a banner year for tar spot. These results might not be as clear in a year where tar spot is not as intense.

Figure 5. Tar spot severity from multi-state trials where corn was treated with foliar fungicides at the VT corn growth stage, or not treated. Source: Telenko et al., 2022 – https://apsjournals.apsnet.org/doi/10.1094/PHP-02-22-0012-BR.

Figure 6. Corn yield from multi-state trials where corn was treated with foliar fungicides at the VT corn growth stage, or not treated. Source: Telenko et al., 2022 – https://apsjournals.apsnet.org/doi/10.1094/PHP-02-22-0012-BR.

The Conclusion

DON’T PANIC! This is just a call to be ready. Download the apps and know what the weather is doing. Use your prior knowledge and scouting in key locations to track tar spot. Get your management plan in place. Have your fungicide of choice available. Communicate with your custom applicator. Be ready to spray between the VT and R3 growth stages if you plan to use just one fungicide application and you are seeing tar spot increase. If you spray between the V8 and VT growth stages, be ready to monitor the smartphone apps and do more scouting as you might have to pull the trigger again later in the season. Get out and SCOUT, SCOUT, SCOUT!

Other Resources

2021 Wisconsin Fungicide Test and Disease Management Summary Now Available

Brian Mueller, Researcher II, UW-Madison, Plant Pathology

Damon Smith, Associate Professor and Extension Specialist, UW-Madison, Plant Pathology

Mimi Broeske, Distinguished Editor, UW-Madison, Nutrient and Pest Management Program

Each year the Wisconsin Field Crops Pathology Program conducts a wide array of fungicide and disease management tests on alfalfa, corn, soybeans, and wheat. These tests help inform researchers, practitioners, and farmers about the efficacy of certain fungicide products on specific diseases and how to pair them with other disease management strategies. We hope you find this report useful in making decisions for the 2022 field season.

The 2021 Wisconsin Field Crops Fungicide Test and Disease Management Summary is available by clicking here. These tests are by no means an exhaustive evaluation of all products available, but can be used to understand the general performance of a particular fungicide in a particular environment. Keep in mind that the best data to make an informed decision, come from multiple years and environments. To find fungicide performance data from Wisconsin in other years, visit the Wisconsin Fungicide Test Summaries page. You can also consult publication A3646 – Pest Management in Wisconsin Field Crops to find information on products labeled for specific crops and efficacy ratings for particular products. Additional efficacy ratings for some fungicide products for corn foliar fungicidessoybean foliar and seed-applied fungicides, and wheat foliar fungicides can be found on the Crop Protection Network website.

Mention of specific products in these publications are for your convenience and do not represent an endorsement or criticism. Remember that this is by no means a complete test of all products available.  You are responsible for using pesticides according to the manufacturers current label. Some products listed in the reports referenced above may not actually have an approved Wisconsin pesticide label. Be sure to check with your local extension office or agricultural chemical supplier to be sure the product you would like to use has an approved label.  Follow all label instructions when using any pesticide. Remember the label is the law!

New Research Update: Disease Development and Deoxynivalenol Accumulation in Silage Corn

Richard W. Webster, University of Wisconsin-Madison; Maxwell O. Chibuogwu, University of Wisconsin-Madison; Hannah Reed, University of Wisconsin-Madison; Brian Mueller, University of Wisconsin-Madison; Carol L. Groves, University of Wisconsin-Madison; Albert U. Tenuta, Ontario Ministry of Agriculture, Food and Rural Affairs; Martin I. Chilvers, Michigan State University; Kiersten A. Wise, University of Kentucky; and Damon Smith, University of Wisconsin-Madison.

A new research update has just been published on the Crop Protection Network summarizing recent work conducted to understand how deoxynivalonol (DON or vomitoxin) accumulates in silage corn plants. We also took a look at managing this issue with fungicides. The summary of the work is below, or you can click here to read the entire research update.

Gibberella ear rot

Summary

  • Fusarium graminearum is a fungus that causes the two diseases, Gibberella ear rot and Gibberella stalk rot, which can lower yield and feed quality of silage corn.
  • This fungus produces a secondary metabolite called deoxynivalenol (DON; also known as vomitoxin) during development and colonization of the corn plant, which is toxic to both humans and livestock.
  • Our research found that infection, colonization, and production of DON by F. graminearum in ears and stalks of corn plants can differ, and suggests that the two diseases can occur independently of each other.
  • Foliar fungicides reduced foliar diseases in both years, but the effects of fungicide on DON concentrations across entire plants were inconsistent in 2019.
  • Scouting for Gibberella ear and stalk rot and testing for DON in silage corn is important even if visual ear symptoms are not present as DON may still be accumulating in the stalks.

2021 Wisconsin Pest Management Update Meetings (In-Person Events Cancelled; Virtual Offering Only)

After much deliberation, we made the difficult decision to pivot the 2021 Wisconsin Pest Management Update Meetings from a hybrid model to all virtual because of continued COVID-19 concerns and low registration numbers. Thus, the in-person events at Darlington (November 16, 2021), Chippewa Falls (November 17, 2021) and Kimberly (November 18, 2021) are now cancelled.

We will maintain the virtual offering on Friday November 19th(9:00 AM to Noon) and are adding a second virtual offering of the same program on Tuesday November 16th (1:00 PM to 4:00 PM) so participants can pick the option that best fits their schedule.

To register for one of the virtual events, please go to the following link: https://go.wisc.edu/8tufvc

This year’s speakers will include:

  • Mark Renz, Perennial Cropping Systems Extension Weed Specialist
  • Rodrigo Werle, Annual Cropping Systems Extension Weed Specialist
  • Nick Arneson, Extension Outreach Specialist, weeds
  • PJ Leisch Extension Entomology Diagnostician
  • Damon Smith, Extension Field Crops Pathologist

Topics will include updates in the area of weed, pest, and disease management along with a panel discussion and Q&A regarding the pest management challenges related to planting soybeans early.

Three (3) Pest Management CCA CEUs have been requested for this event.

Registration includes PDF of A3646 Pest Management In Wisconsin Fields.

We apologize for any inconvenience this decision may cause.

Pest Management Update Team